
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, 2022 1

Few-Shot Named Entity Recognition via
Meta-Learning

Jing Li, Billy Chiu, Shanshan Feng and Hao Wang

Abstract—Few-shot learning under the N -way K-shot setting (i.e., K annotated samples for each of N classes) has been widely
studied in relation extraction (e.g., FewRel) and image classification (e.g., Mini-ImageNet). Named entity recognition (NER) is typically
framed as a sequence labeling problem where the entity classes are inherently entangled together because the entity number and
classes in a sentence are not known in advance, leaving the N -way K-shot NER problem so far unexplored. In this paper, we first
formally define a more suitable N -way K-shot setting for NER. Then we propose FEWNER, a novel meta-learning approach for
few-shot NER. FEWNER separates the entire network into a task-independent part and a task-specific part. During training in
FEWNER, the task-independent part is meta-learned across multiple tasks and the task-specific part is learned for each individual task
in a low-dimensional space. At test time, FEWNER keeps the task-independent part fixed and adapts to a new task via gradient
descent by updating only the task-specific part, resulting in it being less prone to overfitting and more computationally efficient.
Compared with pre-trained language models (e.g., BERT and ELMo) which obtain the transferability in an implicit manner (i.e., relying
on large-scale corpora), FEWNER explicitly optimizes the capability of “learning to adapt quickly” through meta-learning. The results
demonstrate that FEWNER achieves state-of-the-art performance against nine baseline methods by significant margins on three
adaptation experiments (i.e., intra-domain cross-type, cross-domain intra-type and cross-domain cross-type).

Index Terms—Natural Language Processing, Sequence Labeling, Few-Shot Learning, Meta-Learning
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1 INTRODUCTION

NAMED entity recognition (NER) is a fundamental task
in natural language processing, aiming at jointly re-

solving the boundaries and the categorical label of a named
entity in text [1], [2]. NER not only acts as a standalone tool
for information extraction (IE), but also plays an essential
role in a variety of downstream applications, such as infor-
mation retrieval [3], question answering [4], etc.

A significant amount of work [5]–[11] has been devoted
to developing end-to-end neural-based models for NER,
but these require large quantities of annotated corpora. An
effective solution to reduce the data requirement is transfer
learning [12], which makes use of abundant data in a source
task to improve performance in a low-resource target task.
Recently, several studies have contributed effort to lever-
aging deep transfer learning for NER, and can be catego-
rized along two lines: homogeneous label-set and hetero-
geneous label-set approaches. The homogeneous label-set
approaches [13]–[15] assume that the source and target tasks
have the same entity labels, which limits their applications.
The heterogeneous label-set approaches [16]–[19] commonly
partition an NER model into shared and private parts to
address the label-discrepancy problem, resulting in the need
of training the private part from scratch in target tasks. This
paper addresses the following question, which has not yet
been explored: For NER adaptation, can the shared knowledge
be learned across homogeneous and heterogeneous label-sets?

An effective solution to address the above adaptation
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problem is few-shot learning under the N -way K-shot
setting (i.e., K annotated samples for each of N classes,
and a fixed label space: N classes) which has been widely
used in relation classification (e.g., FewRel [20]) and image
classification (e.g., Mini-ImageNet [21]–[23]). However, NER
is typically framed as a sequence labeling problem whose
goal is to assign a class to each word in a sentence. Sequence
labeling is drastically different from the conventional classi-
fication task, where each member is independently classified
into a category without taking sequence dependency into
account. Moreover, a training sample of NER (e.g., a sen-
tence) may have multiple entities whose number and classes
are not known in advance. Therefore, the entity classes are
inherently entangled together in a sentence. This raises a
natural question: can the standard N -way K-shot setting in
few-shot image classification be adjusted so that it is more suitable
for sequence labeling?

In theN -wayK-shot setting, it is still possible to transfer
knowledge among different tasks because named entities
often share lexical and context features. As humans, we
have a remarkable ability to quickly grasp new concepts
from a very small number of examples or a limited amount
of experience, leveraging prior knowledge and context. In
short, we learn how to learn much faster and more efficiently
across various tasks. Meta-learning [24], [25] was proposed
to mimic the human ability of quickly learning new skills
with few examples. Recently, meta-learning has received
resurgence in the context of few-shot learning [21], [26],
[27]. Unfortunately, most meta-learning methods can easily
overfit since the entire network is updated on just few
samples at test time [28], [29].

In this paper, we first formally define the N -way K-
shot setting in few-shot NER. Inspired by fast context



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, 2022 2

meta-learning learning/adaptation

MAML Our Approach

θθ

θ
′
θ
′

θθ

θθ

θ
∗

1
θ
∗

1

θ
∗

2
θ
∗

2

θ
∗

3
θ
∗

3

ϕϕ

ϕ
∗

1
ϕ
∗

1

ϕ
∗

2
ϕ
∗

2

ϕ
∗

3
ϕ
∗

3

∇L1∇L1

∇L2∇L2

∇L1∇L1

∇L2∇L2

∇L3∇L3
∇L3∇L3

Fig. 1. Illustration of FEWNER. Our approach is less prone to overfitting
and more computationally efficient because it adapts to new tasks on a
low-dimensional space φ.

networks [28] in computer vision, we propose FEWNER,
a novel meta-learning based approach for few-shot NER.
FEWNER separates the entire network into a task-
independent part (i.e., θ in Figure 1) and a task-specific
part (i.e., φ in Figure 1). During training, θ is meta-learned
across multiple tasks and φ is learned for each individual
task in a low-dimensional space. At test time, FEWNER
keeps θ fixed and adapts to a new task via gradient descent
by updating only the task-specific part φ, while model
agnostic meta learning (MAML) [25] performs adaptations
by updating the entire network, as shown in Figure 1.
Intuitively, FEWNER has two inherent advantages: 1) it is
less prone to overfitting; 2) it is computationally efficient
because it does not need the second order gradient com-
putation with respect to θ, but only φ. On the other hand,
pre-trained language models (e.g., BERT and GPT3) have
showed powerful transfer performance in many NLP tasks.
However, the transferability is obtained in an implicit man-
ner where they rely heavily on large-scale corpora. Instead,
FEWNER explicitly optimizes the capability of “learning
to adapt quickly” through meta-learning. In summary, the
main contributions of this work are four-fold:

• To the best of our knowledge, we are the first to in-
vestigate the problem of few-shot NER under N -way
K-shot settings in a meta-learning manner.

• We propose FEWNER, a novel meta-learning approach
for few-shot NER. FEWNER can quickly solve a new
task by updating only a small set of parameters in a
low-dimensional space with few gradient update steps,
resulting in it being less prone to overfitting and more
computationally efficient.

• We extensively evaluate FEWNER on three experi-
ments. FEWNER achieves state-of-the-art performance
by significant margins, outperforming recent baseline
methods.

• We conduct experiments to further analyze the param-
eter settings and architectural choices. We also present
a study for qualitative analysis.

2 BACKGROUND

2.1 Named Entity Recognition

Named entity recognition (NER) is usually framed as
a sequence labeling problem. There are three common

paradigms for NER [1]: knowledge-based unsupervised sys-
tems, feature-based supervised systems and neural-based sys-
tems. Knowledge-based unsupervised systems rely on lexical
knowledge, including domain-specific gazetteers [30], and
shallow syntactic knowledge [31]. Feature-based supervised
systems cast NER as a multi-class classification or sequence
labeling task. Feature engineering is critical in these systems.
For example, Ji et al. [32] designed 19 local features and
5 global features for location recognition in Tweets. Based
on manually crafted features, many algorithms have been
applied in supervised NER, e.g., the Support Vector Ma-
chine (SVM) [33], Hidden Markov Model (HMM) [34] and
Conditional Random Field (CRF) [32].

Recently, several neural architectures have been widely
applied in NER because neural-based systems have the
advantage of inferring latent features and learning sequence
labels in an end-to-end fashion. The use of neural models
for NER was pioneered in [8], where an architecture based
on temporal convolutional neural networks (CNNs) over a
word sequence was proposed. Since then, there has been
a growing body of work on neural-based NER. Existing
neural-based systems can be unified into a framework with
three components: an input representation, context encoder
and tag decoder. Commonly used input representations
include word-level and character-level representations [5],
[6], [35]. Widely used context encoder architectures include
CNNs [8], recurrent neural networks (RNNs) [7], recursive
neural networks [36] and deep transformers [37]. At the
top of the context encoder, a CRF layer [38], a pointer
network [15], [39], or an RNN layer [40] is employed to
make sequence label predictions.

In addition, transfer learning aims to perform a machine
learning task in a target domain by taking advantage of
knowledge learned from a source domain [12]. Several
studies [18], [41]–[44] have already contributed effort to
leveraging deep transfer learning for NER. Yang et al. [45]
first investigated the transferability of different layers of rep-
resentations. Pius and Mark [46] extended Yang’s approach
to allow joint training on the informal corpus and incor-
porate sentence-level feature representations. Jia et al. [17]
utilized the cross-domain language model as a bridge across
domains to design a novel parameter generation network.
Zhou et al. [19] proposed two adversarial transfer network
to explore effective feature fusion between high and low
resource domains. Different from these parameter-sharing
architectures, some methods [47], [48] apply transfer learn-
ing in NER by first training a model on a source task and
then using it on the target task for fine-tuning. Recently,
Li et al. [15] proposed an adversarial approach to transfer
knowledge between two domains, rather than few-shot
NER. Specially, Hou et al. [44] just investigated the K-shot
setting for sequence labeling, leavingN -way unexplored. To
the best of our knowledge, there is no work addressing the
N -way K-shot scenario for few-shot NER.

2.2 Meta-Learning

Meta-learning (a.k.a. learning to learn) [24], [49] aims to
learn a general model that can quickly adapt to a new
task given very few training samples, without needing to
be retrained from scratch. Most recent approaches to meta-
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learning focus on few-shot learning and can be broadly cat-
egorized as metric-based methods [50], [51], memory-based
methods [52], [53], and optimization-based methods [25],
[26]. Here, we introduce an optimization-based method,
Model-Agnostic Meta-Learning (MAML) [25], in detail.

Formally, a model is represented by a function fθ with
parameters θ. MAML first forms a set of training tasks
T = {T1, ..., Ti, ...}, where each task consists of a support
set Dspt and a query set Dqry (Dspt ∩ Dqry = ∅). In the
N -way K-shot [50] setting (i.e., the training instances are
sampled with K labeled examples from each of N classes),
the model changes parameters θ to θ′i on Dspt by gradient
descent:

θ′i ← θ − α∇Lspt
Ti

(fθ) (1)

where α is a universal learning rate, and Lspt
Ti

is the task-
related training loss. Model parameters θ are trained to
optimize the performance of fθ′

i
on the unseen validation

examples from Ti across tasks. This leads to the MAML
meta-objective:

min
θ

∑
Ti

Lqry
Ti

(fθ′
i
) = min

θ

∑
Ti

Lqry
Ti

(fθ−α∇Lspt
Ti

(fθ)
) (2)

The goal of MAML is to optimize the model parameters θ to
quickly adapt to new tasks over a few gradient steps, with
few training examples from the unseen tasks. The model
parameter θ is updated by gradient descent:

θ ← β∇θ

∑
Ti

Lqry
Ti

(fθ′
i
) (3)

where β is the learning rate of meta optimization. Note
that the objective of MAML is designed for few-shot clas-
sification under the problem setting of N -way K-shot. For
sequence labeling, a training example may have multiple
entities whose number and classes in a sentence are not
known in advance. Thus, we need to reformulate the N -
way K-shot setup for the sequence labeling problem.

Some studies [21]–[23], [54] have applied meta-learning
strategies for image classification in few-shot learning. How-
ever, meta-learning for natural language processing is less
common than for computer vision. There have been a few
attempts devoted to the application of meta-learning in
NLP over the last two years. Gu et al. [55] first explored
meta-learning in neural machine translation. They framed
the low-resource translation as a meta-learning problem
which learns to adapt to low-resource languages based on
multilingual high-resource language tasks. Huang et al. [56]
proposed a method for natural language to structured query
generation based on MAML [25], by reducing a regular
supervised learning problem to the few-shot meta-learning
scenario. Qian and Zhou [57] proposed DAML, which is
based on meta-learning, to combine multiple dialog tasks
during training, in order to learn general and transferable
information that is applicable to new domains. Lin et al. [58]
proposed casting personalized dialog learning as a meta-
learning problem, which allows the model to generate per-
sonalized responses by efficiently leveraging only a few
dialog samples instead of human-designed persona descrip-
tions. Especially, Wu et al. [43] extended MAML to the
cross-lingual NER task with minimal resources. However,
Wu’s approach does not work on N -way K-shot settings,

requiring a certain percentage of labeled training data (i.e.,
5%) for fine-tuning in low-resource settings. In addition,
our approach differs from these strategies in that FEWNER
performs adaptations in a low-dimensional space instead of
the entire network.

3 FEWNER: FEW-SHOT NAMED ENTITY RECOG-
NITION VIA META-LEARNING

In this section, we first define the problem of meta-learning
for NER, especially under the N -way K-shot setting. Then
we present a layer-by-layer description of FEWNER.

3.1 Problem Statement: N-Way K-Shot in NER
In few-shot learning, we aim to obtain a model f : s 7→ ŷ
that maps a sentence s = {w1, ..., wl, ...wL} in which each
word has a true label y = {y1, ..., yl, ...yL} ∈ Y to predic-
tions ŷ ∈ Y with few training samples. A task Ti is a batch of
sentences, which consists of a support set Dspt

Ti
and a query

set Dqry
Ti

(Dspt ∩ Dqry = ∅). In the training phase, the true
labels of Dspt

Ti
and Dqry

Ti
are both available in source tasks.

In the testing phase, an unseen target task Tj only contains
a few labeled samples Dspt

Tj
. The ultimate goal is to make

predictions for Dqry
Tj

, given the Dspt
Tj

.
TheN -wayK-shot setting has been widely adopted [20],

[25], [54] in recent research on few-shot learning, whereDspt
Ti

and Dspt
Tj

usually both include K samples (K-shot) for each
of N classes (N -way). Constructing a task is easier in con-
ventional classification problems (i.e., where each instance
has a unique class) than our sequence labeling problem. This
is because a training example (e.g., a sentence) in sequence
labeling may have multiple entities whose number and
classes are not known in advance. That is, the classes are
inherently entangled together in sequence labeling.

Similar to the dependency transfer approach [44], we
utilize a greedy-including approach to construct N -way K-
shot tasks for sequence labeling: (1) we randomly pick
up a sentence and then greedily extend the set Dspt

Ti
. (2)

a sentence is included if it can bring a gain for “way”
or “shot”. Taking the 5-way 1-shot configuration as an
example, Dspt

Ti
= ∅ is initialized an empty set at first.

Given a sentence, “[Jordan]PER is a [NBA]ORG player.”, it
is picked. Given a new sentence, “[The Chicago Bulls]ORG

selected [Jordan]PER”, it is not picked because there is no
gain for “way” or “shot”. Given other sampled sentence,
“[Jordan]PER was seen gambling in [Atlantic City]LOC”, it is
picked because there is a gain for “way” (i.e., new class
LOC). (3) repeat until the number of classes and shots
reaches N and K , respectively. Finally, at least one class will
appear less than K times in Dspt

Ti
if a sentence is removed

from it. Dqry
Ti

is constructed with the same N classes of Dspt
Ti

and the rest of the dataset after constructing Dspt
Ti

.

3.2 The FEWNER Approach
3.2.1 Overview of FEWNER
Figure 2 shows an overview of our proposed FEWNER,
which consists of a training phase and a testing phase. The
key idea of this paper is to learn a model on a variety of
tasks, such that it can quickly solve new unseen tasks with
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Fig. 2. An overview of FEWNER, which consists of the shared task-independent parameters θ and learned task-specific context parameters φ.
During inner-training, φ is initialized to 0 and is learned on Dspt

Ti
from scratch for each task. During outer-training, θ is learned on Dqry

Ti
across

multiple tasks. In the test phase, θ is fixed and the context parameters φ are adapted to new tasks with few samples Dspt
Tj

, resulting in FEWNER
being less prone to overfitting and more computationally efficient.

only a small number of training samples. More importantly,
FEWNER adapts to new tasks via gradient descent by
updating only a small set of learned parameters (i.e., task-
specific context parameters φ) at test time, instead of the
entire network θ. FEWNER has two inherent advantages:
(1) it adapts to new tasks through a low-dimensional space
φ and is less prone to overfitting, compared to some existing
methods [25], [26] that make adaptation updates on θ with
few training samples. (2) it does not need the second order
gradient computation with respect to θ, but only φ. In
addition, the N -way K-shot mechanism allows FEWNER
to learn meta-knowledge and label dependencies from the
learning experience across many different tasks that share
a same label space, i.e., N ways. In summary, the context
parameters φ (initialized to 0 in each task loop) are learned
from each individual task; the sequence labeling parameters
θ are learned across multiple different tasks.

3.2.2 The Backbone of Sequence Labeling
Based on the summarization in the survey of NER [1],
CRF is powerful to capture label transition dependencies
when adopting static embeddings such as Word2vec and
GloVe. CNN-BiGRU is much computationally cheaper than
Transformers based encoders (e.g., GPT3 has 175 billion
parameters). Transformers fail on NER task if they are not
pre-trained and when the training data is limited [59], [60].
The performance of CNN-BiGRU is comparative with, even
better than Transformers-based models on small corpora
when training from scratch. Essentially, our approach is

Jordan was born in Brooklyn

+Word-level  
representation

Character-level 
representation 

b o r n

CNNs 

S-PER O S-LOCO O

Fig. 3. CNN-BiGRU-CRF for sequence labeling (i.e., θ).

model-agnostic. Therefore, we adopt CNN-BiGRU-CRF as
the backbone of sequence labeling based on the consid-
eration of the size of experimental corpora and the com-
putational complexity. Note that we use θ to denote all
parameters in CNN-BiGRU-CRF. As shown in Figure 3, the
backbone utilizes a Convolutional Neural Network (CNN)
to extract character-level representations, a bidirectional
Gated Recurrent Unit (BiGRU) to encode sequence context
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and a Conditional Random Field (CRF) layer to produce the
tag sequence.

Given an input sentence W = (W1,W2, . . . ,WL) of
length L, let Wl denote its l-th word. After the input
representation layer, the input sequence can be represented
as X = (x1,x2, . . . ,xL). Then a BiGRU is used to en-
code the sequence context and yields hidden states in
h = {h1,h2, ...,hL} ∈ RL×2H , where H is the hidden
size of the GRU layer. For the tag decoder, we rely on
a CRF that can model the label sequence jointly instead
of decoding each label independently. Formally, consider
h = {h1,h2, ...,hL} as the input; y = {y1, y2, ..., yL} is the
corresponding label sequence. Y(h) denotes the set of pos-
sible label sequences for h. The probabilistic model for the
sequence CRF defines a series of probabilities p(y|h;W , b)
over all possible label sequences y, given h, by:

p(y|h;W , b) =

∏L
i=1 ψi(yi−1, yi,h)∑

y′∈Y(h)

∏L
i=1 ψi(y′i−1, y

′
i,h)

(4)

where ψi(y
′, y,h) = exp(W T

y′,yh) + by′,y , W T
y′,y and by′,y

are the weights and bias corresponding to label pair (y′, y),
respectively.

3.2.3 Meta-Learning Strategy

The meta-learning strategy consists of two core phases: an
inner-training phase and an outer-training phase, as shown
in Figure 2.

Inner-Training. For each task Ti ∈ T in the inner training,
we first initialize φ to 0 before the forward pass. Then the
task-specific context parameters φ are adapted by gradient
descent on Dspt

Ti
at the inner step k:

φk = φk−1 − α∇φk−1
Lspt
Ti

(θ, φk−1) (5)

where α is the learning rate of the inner optimization and
Lspt
Ti

= −
∑
p(y|h). At each inner step, the gradients are

calculated with respect to the parameters from the previous
step (i.e., ∇φk−1

). Note that the task-independent parame-
ters θ are not changed in the inner loop and the updated
parameters φk are also a function of θ since the gradients
flow through the model θ during backpropagation.

Outer-Training. After inner-training, we have already ob-
tained an updated model (θ, φk). This updated model will
be tested on new samples (i.e., Dqry

Ti
) from Ti. The intuition

is that θ is improved by considering how the test error
on new data changes with respect to the parameters. It
mimics the process of the temporary model (i.e., (θ, φk))
being adapted to unseen data. More specifically, the task-
independent parameters θ are updated by gradient descent:

θ ← θ − β∇θ
1

|T |
∑
Ti∈T

Lqry
Ti

(θ, φk) (6)

where β is the meta-learning rate and |T | is the batch
size. Note that Equation (6) is computed by differentiating
the loss Lqry

Ti
with respect to the parameters θ. Unlike

the common gradient, the update mechanism of Equations
(6) involves a gradient (i.e., ∇θ) through a gradient (i.e.,
∇φk−1

). This process requires second order optimization
partial derivatives due to the dependency on Equation 5.
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Fig. 4. Conditioning context parameters φ on backbone θ. A network
layer hl is augmented with task-specific parameters φ.

3.2.4 Conditioning on Backbone Parameters
For each task Ti, the context parameters φ are learned
from scratch. Following [25], [28], we set the initial context
parameters to a vector filled with zeros before inner updates,
i.e., φ = 0 = [0, ..., 0]⊤. However, φ is independent of
the network input, so we need to know where and how
to condition the backbone network θ. For a layer θl, we can
simply concatenate φ to the input of this layer hl so that the
concatenation can modulate the rest of the network to solve
new tasks:

hl+1
j = g(

∑
θi,j · hli +

∑
θm,j · φm + b) (7)

where θi,j are the weights associated with layer input hli,
and θm,j are the weights associated with the context param-
eter φm. Another conditioning method is based on feature-
wise linear modulation FiLM [61], which performs an affine
transformation on the feature maps:

FiLM(hi) = γhi + η (8)

[γ, η] =
∑

θFiLM · φm + b (9)

Note that φ is updated in the inner loop. θi,j , θm,j and
θFiLM are updated in the outer loop. These two conditioning
methods are illustrated in Figure 4. In our implementation,
we condition φ on the output of BiGRU h using FiLM.
The intuition is that the adapted hidden states are more
beneficial for capturing task-specific label dependencies in
the subsequent CRF layer.

3.2.5 Algorithm Flow
Algorithm 1 summarizes the procedures for training and
adapting FEWNER. In the training procedure, the task-
specific parameters φ are initialized to 0 and updated by the
loss Lspt

Ti
for each task Ti. The task-independent parameters

θ are updated by the loss Lqry
Ti

across different tasks, and
φ is not updated in the outer optimization. In the adapting
procedure, we first initialize the sequence labeling model
using θMeta, which was already learned in the previous
training procedure. The main difference between these two
procedures is that θMeta is fixed and φ is learned from the
current hold-out task Tj in the adapting procedure.

4 EXPERIMENTS

In this section, we first detail our experimental settings.
Then, we present our experimental results on three adapta-
tion scenarios: intra-domain cross-type, cross-domain intra-
type, and cross-domain cross-type adaptations.
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Algorithm 1: Training and Adapting FEWNER
1 Training Procedure()
2 Set step size α, β; Initialize θ;
3 while not converge do
4 Sample a batch of tasks T = {Ti}MetaBatch

i=1 ;
5 for Ti in MetaBatch do // Outer loop
6 Set φ = 0 = [0, ..., 0]⊤;
7 for k in InnerSteps do // Inner gradient

steps
8 φk = φk−1 − α∇φk−1L

spt
Ti

(θ, φk−1)

9 θ ← θ − β∇θ
1

|T |
∑

Ti∈T L
qry
Ti

(θ, φk) ;
// Meta-update

10 return θMeta

11 Adapting Procedure()
12 Set step size α; Initialize θ using θMeta;
13 Sample a hold-out task Tj ;
14 Set φ = 0 = [0, ..., 0]⊤;
15 for k in InnerSteps do // Inner gradient

steps
16 φk = φk−1 − α∇φk−1L

spt
Tj

(θMeta, φk−1)

17 Evaluate Dqry
Tj

using the model (θMeta, φk) ;
// θMeta is fixed, φk is learned from
the current task Tj

18 return NER Performance

TABLE 1
Statistics of datasets used in our experiments.

Dataset Genre #Types #Sentences #Mentions

NNE Newswire 114 39932 185925
FG-NER Newswire 200 3941 7384
GENIA Medical 36 18546 76625

ACE2005 Various 54 17399 48397
OntoNotes Various 18 42224 104248

BioNLP13CG Medical 16 5939 21315

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Metrics

Unlike image classification [51] and relation extraction [20],
there is no existing few-shot learning dataset for NER. In
our three groups of experiments, we collect a total of seven
datasets, as summarized in Table 1. NNE, FG-NER and
GENIA are used in the intra-domain cross-type adapta-
tion. ACE 2005 consists of 7 domains and is used in the
cross-domain intra-type adaptation. GENIA, BioNLP13CG,
OntoNotes and FG-NER are used in the cross-domain cross-
type adaptation. Details of data splits will be introduced in
sections 4.2.1, 4.3.1 and 4.4.1.

In the N -way K-shot setting, each hold-out task Tj con-
sists of a support set Dspt

Tj
and a query set Dqry

Tj
. We consider

the samples in Dqry
Tj

as a testing episode. For each episode, g
is the total number of annotated entities in ground truth; r is
the total number of entities detected by a model; c is the total
number of correctly detected entities by the model. F1 score
for each episode is calculated as F1 = 2×Precison×Recall

Precison+Recall =
2c
g+r . We take the average of the F1 scores (95% confidence
intervals) over all the episodes as the evaluation metric, i.e.,
mean ± 1.96× standard deviation/

√
sample size.

4.1.2 Baseline Methods
We evaluate FEWNER against the following competitors:

• FineTune - This method takes CNN-BiGRU-CRF (see
Section 3.2.2) as the sequence labeling model. It is
trained on the support sets of training tasks. Then, it is
fine-tuned on the support sets of test tasks and finally
evaluated on the query sets of test tasks.

• ProtoNet - This method regards sequence labeling as
classification for each single token [62]. Prototypical
Network [51] is a few-shot classification model that
learns a metric space in which classification can be
performed by computing the distances to prototype
representations of each class.

• MAML - This is a Model-Agnostic Meta-Learning
method [25], which does not partition network param-
eters into task-specific and task-independent parame-
ters. It requires the entire network to be updated in
inner loops and at test time.

• SNAIL - This is a meta-learning model that utilizes
a combination of temporal convolutions and causal
attention: the former to aggregate information from
past experience and the latter to pinpoint specific pieces
of information [29].

• Pre-trained Language Models - These models employ a
language model during training. They are very efficient
in predicting the next word or masked words in a
sequence. We build up a CRF layer on the top of GPT2
[63], Flair [64], ELMo [6], BERT [37] and XLNet [65].
Note that we utilize the Flair1 tool to produce contextu-
alized embeddings. However, the Flair framework does
not allow further fine-tune language models during
downstream training. This may be a threat to validity.
These stacked models are first trained on the support
sets of training tasks. Then, they are fine-tuned (i.e.,
only CRF can be fine-tuned) on the support sets of test
tasks and finally evaluated on the query sets of test
tasks.

4.1.3 Implementation Details
For FineTune, ProtoNet, MAML, SNAIl and FEWNER, we
use GloVe 300-dimensional pre-trained word embeddings
released by Stanford, which are fine-tuned during training.
The dimension of the character-level representation is 100
and the CNN filters are [2, 3, 4]. The total number of CNN
filters is 150. Note that the GloVe embeddings are uncased
and the character-level representations are cased. The hyper-
parameter selection is based on experiments with a grid
search strategy. We present the optimal parameters as fol-
lows. The bidirectional GRU has a depth of 1 and hidden
size of 128. In our approach, the inner learning rate α is
0.1 and meta-learning rate β is 0.0008. The size of inner
gradient steps is 2 for training and 8 for testing. The size
of a meta batch for outer loops is 8. We use a dropout of
0.3 after the convolutional or recurrent layers and a fixed L2
regularization of 10−7. The decay rate is 0.9 for each 5000
tasks and the gradient clip is 5.0. Our proposed FEWNER
is implemented with the PyTorch framework and evaluated
on NVIDIA Tesla V100 GPUs. Note that FEWNER requires
second order optimization partial derivatives.

1. https://github.com/flairNLP/flair

https://github.com/flairNLP/flair
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TABLE 2
Intra-domain cross-type adaptation performance (average F1 score with 95% confidence intervals on a set of 1000 randomly constructed tasks) on

the test sets of NNE, FG-NER and GENIA.

Methods NNE: 5-way FG-NER: 5-way GENIA: 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Dynamic Token Representation: Contextualized Language Model Embeddings + CRF
GPT2 14.36± 0.59% 15.51± 0.60% 13.96± 0.65% 14.21± 0.85% 13.75± 0.78% 14.45± 0.79%
Flair 15.26± 0.48% 16.32± 0.46% 15.85± 0.63% 16.87± 0.81% 9.77± 0.43% 11.44± 0.46%

ELMo 15.85± 0.54% 16.33± 0.58% 18.74± 0.73% 18.90± 0.91% 15.21± 0.44% 19.18± 0.64%
BERT 16.61± 0.56% 17.16± 0.59% 16.56± 0.64% 19.67± 0.83% 12.02± 0.55% 14.93± 0.53%
XLNet 16.34± 0.61% 17.23± 0.58% 16.83± 0.67% 19.01± 0.85% 11.98± 0.44% 12.03± 0.52%

Static Token Representation: GloVe + CNN
FineTune 18.24± 0.50% 18.34± 0.52% 17.85± 0.69% 20.69± 0.87% 6.67± 0.32% 7.21± 0.34%
ProtoNet 19.45± 0.75% 21.44± 0.65% 22.78± 0.85% 25.67± 0.81% 12.34± 0.47% 15.03± 0.50%
MAML 19.98± 0.83% 22.56± 0.73% 24.09± 0.79% 26.82± 0.74% 13.73± 0.59% 16.46± 0.49%
SNAIL 20.17± 0.78% 24.48± 0.82% 25.68± 0.76% 29.89± 0.94% 15.66± 0.52% 20.74± 0.68%

FewNER (ours) 23.74± 0.65% 29.50± 0.68% 30.54± 0.85% 40.16± 1.24% 23.24± 0.73% 29.19± 0.64%

4.2 Intra-Domain Cross-Type Adaptation
4.2.1 Setups
In this experiment, we investigate the intra-domain cross-
type adaptation, which aims to identify novel entity types
with few training samples for a specific domain. We verify
the effectiveness of different methods on three datasets:
NNE (Newswire domain), FG-NER (Newswire domain) and
GENIA (Medical domain). Because we aim to identify novel
entity types, we split each dataset into non-overlapping par-
titions, i.e., the entities used for testing do not appear during
training. In the end, the training, validation and testing sets
contain 52, 10, 15 types in NNE, 163, 15, 20 types in FG-
NER and 18, 8, 10 types in GENIA. We report the average
F1 scores with 95% confidence intervals on a random set of
1000 tasks from the test sets. For fair comparison, different
methods are evaluated on the same randomly sampled 1000
tasks because we fix the random seed in the evaluation
phase.

4.2.2 Experimental Results
Table 2 reports the experimental results of intra-domain
cross-type adaptation. We make the following observations:

First, our approach FEWNER achieves state-of-the-art
performance by significant margins, outperforming two
groups of baseline methods (i.e., dynamic token repre-
sentation and static token representation). More specifi-
cally, our model outperforms the best results of dynamic-
representation-based methods by relative F1 improvements
of 42.93%, 62.91% and 52.79% in the 1-shot setting, and
71.21%, 104.17% and 52.19% in the 5-shot setting, for NNE,
FG-NER and GENIA datasets, respectively. Our model
outperforms the best result of static-representation-based
methods by relative F1 improvements of 17.70%, 18.89%
and 48.40% in the 1-shot setting, and 20.51%, 34.36% and
40.74% in the 5-shot setting, for the NNE, FG-NER and
GENIA datasets, respectively. We attribute this to the fact
that FEWNER is effective in adapting to a new task by
learning its task-specific context information (i.e., φ).

Second, the performance in the 5-shot setting is better
than the 1-shot setting. This is reasonable because there
are more training samples in the 5-shot setting. However,
the improvement is only slight. Compared with relation
extraction [20] and image classification [52], our empirical

results show that few-shot learning under the N -way K-
shot setting in sequence labeling remains challenging and
there is still much room for improvement.

Third, the NNE and FG-NER datasets are from newswire
text and GENIA is from medical text. We observe that few-
shot learning in domain-specific NER (e.g., the medical
domain) is more difficult than in general domains (e.g.,
the newswire domain). In particular, the FineTune method
(without using any adaptation strategy) yields the worst
performance (i.e., 6.67 ± 0.32% and 7.21 ± 0.34%) on the
GENIA dataset. Notably, our approach (i.e., 23.24 ± 0.73%
and 29.19 ± 0.64%) significantly outperforms this baseline
method.

Fourth, the methods with adaptation strategies (i.e., Pro-
toNe, MAML and SNAIL) generally outperform the con-
textualized language models (i.e., GPT2, Flair, ELMo, BER
and XLNet) with a CRF. Although the pe-trained language
models are successful in many downstream tasks, such as
text classification, they fail in few-shot NER. In contrast,
our approach works on a lower-dimensional space. That is,
the sequence labeling network (i.e., θ) is fixed during adap-
tation and the task-specific context parameters (i.e., low-
dimensional φ) are dynamically learned for each individual
task to modulate θ.

4.3 Cross-Domain Intra-Type Adaptation
4.3.1 Setups
In this experiment, we investigate the problem of cross-
domain intra-type adaptation, which aims to identify the
same entity types (intra-type) across different domains
(cross-domain). We use the Automatic Content Extrac-
tion 2005 (ACE2005) dataset2, which consists of six do-
mains: Broadcast Conversations (BC), Broadcast News (BN),
Conversational Telephone Speech (CTS), Newswire (NW),
Usenet (UN), and Weblog (WL). In each domain, there are 7
coarse-grained entity types and 54 fine-grained subtypes an-
notated in the corpus. We use the fine-grained annotations
in this experiment, although some studies [66], [67] report
high performance scores on the coarse-grained types. On
the other hand, ACE2005 is annotated with nested named
entities. For example, the sentence “Orders went out today to

2. https://catalog.ldc.upenn.edu/LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, 2022 8

TABLE 3
Cross-domain intra-type adaptation performance (average F1 score with 95% confidence intervals on a set of 1000 randomly constructed tasks)

on the test sets of UN, CTS and WL domains.

Methods BC → UN: 5-way BN → CTS: 5-way NW → WL: 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Dynamic Token Representation: Contextualized Language Model Embeddings + CRF
GPT2 16.53± 0.73% 17.08± 0.71% 31.12± 0.77% 32.69± 0.79% 14.96± 0.52% 15.51± 0.58%
Flair 14.12± 0.50% 14.96± 0.56% 34.79± 0.81% 37.03± 0.87% 15.10± 0.61% 15.74± 0.63%

ELMo 17.05± 0.61% 17.61± 0.66% 37.10± 0.91% 38.52± 0.95% 16.88± 0.54% 17.77± 0.59%
BERT 17.57± 0.62% 18.20± 0.68% 34.37± 0.85% 36.28± 0.90% 15.28± 0.58% 16.29± 0.57%
XLNet 16.12± 0.69% 17.94± 0.72% 29.32± 0.73% 34.31± 0.86% 16.81± 0.44% 17.56± 0.51%

Static Token Representation: GloVe + CNN
FineTune 16.60± 0.83% 17.49± 0.84% 24.19± 0.52% 24.37± 0.54% 17.28± 0.75% 17.48± 0.75%
ProtoNet 17.46± 0.71% 17.98± 0.67% 28.38± 0.75% 30.55± 0.71% 19.39± 0.59% 20.46± 0.64%
MAML 17.93± 0.68% 18.68± 0.59% 30.57± 0.68% 31.78± 0.83% 22.87± 0.68% 27.83± 0.59%
SNAIL 18.45± 0.83% 20.43± 0.74% 36.19± 0.81% 37.61± 0.68% 25.38± 0.63% 29.92± 0.75%

FewNER (ours) 21.65± 0.61% 25.87± 0.57% 39.66± 0.75% 45.65± 0.66% 31.93± 0.77% 38.66± 0.73%

deploy 17,000 U.S. Army soldiers in the Persian Gulf region” is
originally annotated as [17,000 U.S. Army soldiers]PER:Group,
[U.S.]GPE:Nation, [U.S. Army]ORG:Government, [the Persian Gulf
region]LOC:Region_International, [Persian Gulf]LOC:water-Body. We
only keep the innermost entities for all nested entities. That
is, the above example is preprocessed as [U.S.]GPE-Nation and
[Persian Gulf]LOC:Water-Body in our experiments. We design
three cross-domain adaptations in total: BC → UN, BN
→ CTS and NW → WL. The data split ratio is 8/1/1 for
training, validation and testing. Note that the entity types
for testing have already appeared during training, but the
domains for the two are different.

4.3.2 Experimental Results

Table 3 reports the experimental results of cross-domain
intra-type adaptation. We make the following observations:

First, FEWNER achieves state-of-the-art performance
by significant margins, outperforming all baseline meth-
ods. More specifically, our model outperforms the second
best method (i.e., SNAIL) by relative F1 improvements
of 17.34%, 9.59% and 25.81% in the 1-shot setting, and
26.63%, 21.38% and 29.21% in the 5-shot setting, for BC
→ UN, BN → CTS and NW → WL adaptations, respec-
tively. Similar observations in Section 4.2.2 hold for the
trend in dynamic-representation-based methods and static-
representation-based methods.

Second, although the entity types for testing are seen
during training, the cross-domain intra-type adaptation un-
der the N -way K-shot setting is still a challenging prob-
lem. Because the usage of entities varies from domain to
domain, a fast context adaptation strategy is required for
cross-domain NER. Compared with these baseline methods,
FEWNER is more effective in learning task-specific context
parameters, resulting in a better performance.

Third, for the three adaptation experiments we designed,
BC→ UN yields the worst performance (i.e., 21.65± 0.61%
and 25.87 ± 0.57% ) and BN → CTS yields the best per-
formance (i.e., 39.66 ± 0.75% and 45.65 ± 0.66%). This is
because the domain difference between UN (Usenet) and
BC (Broadcast Conversations) is greater than the difference
between BN (Broadcast News) and CTS (Conversational
Telephone Speech).

4.4 Cross-Domain Cross-Type Adaptation

4.4.1 Setups

In this experiment, we investigate a more difficult scenario:
cross-domain cross-type adaptation, which means that a
model is trained on a source domain A and then adapted to
an unseen target domain B, which also has a different entity
type space from A. In total, we design three adaptations:
GENIA (medical domain with 36 types) → BioNLP13CG
(medical domain with 16 types), OntoNotes (various do-
mains with 18 types)→ BioNLP13CG (medical domain with
16 types), OntoNotes (various domains with 18 types) →
FG-NER (newswire domain with 200 types). Training sets
are taken from the source domains. Note that although
GENIA and BioNLP13CG are both from medical text, we
consider them as different domains because the annotation
and entity types are different. We hold out 20% of target
domain data as the validation set, and test models on the
remaining 80% of target domain data (i.e., test set). We
report the average F1 scores with 95% confidence intervals
on a random set of 1000 tasks from the test sets.

4.4.2 Experimental Results

Table 4 reports the experimental results of cross-domain
cross-type adaptation. We make the following observations:

First, FEWNER achieves state-of-the-art performance
by significant margins, outperforming all baseline meth-
ods. More specifically, our model outperforms the second
best method (i.e., SNAIL) by relative F1 improvements
of 35.06%, 32.36% and 37.95% in the 1-shot setting, and
43.95%, 35.85% and 33.95% in the 5-shot setting, for GE-
NIA → BioNLP13CG, OntoNotes → BioNLP13CG and
OntoNotes→ FG-NER adaptations, respectively.

Second, the performance in the 5-shot setting is slightly
better than the performance in the 1-shot setting. The rel-
atively poor performance indicates the difficulty in cross-
domain cross-type adaptation for NER.

Third, the OntoNotes→ BioNLP13CG adaptation yields
the worst performance (i.e., 13.09±0.63% and 15.46±0.62%
) and the OntoNotes → FG-NER adaption yields the best
performance (i.e., 28.06± 1.12% and 32.87± 1.41%). Com-
pared to the OntoNotes → BioNLP13CG adaptation, the
GENIA→ BioNLP13CG delivers a better performance. This
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TABLE 4
Cross-domain cross-type adaptation performance (average F1 score with 95% confidence intervals on a set of 1000 randomly constructed tasks)

on BioNLP13CG, BioNLP13CG and FG-NER.

Methods GENIA → BioNLP13CG: 5-way OntoNotes → BioNLP13CG: 5-way OntoNotes → FG-NER: 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Dynamic Token Representation: Contextualized Language Model Embeddings + CRF
GPT2 10.31± 0.41% 12.17± 0.49% 9.68± 0.41% 10.23± 0.42% 14.67± 0.73% 14.51± 0.94%
Flair 10.53± 0.33% 12.49± 0.45% 8.37± 0.31% 9.15± 0.33% 13.44± 0.76% 15.18± 0.87%

ELMo 10.39± 0.41% 11.45± 0.42% 10.76± 0.55% 11.85± 0.59% 15.15± 0.77% 16.08± 0.97%
BERT 13.36± 0.53% 15.15± 0.61% 9.15± 0.29% 9.98± 0.31% 14.14± 0.71% 15.86± 0.89%
XLNet 9.15± 0.32% 10.59± 0.37% 7.30± 0.34% 7.72± 0.34% 14.13± 0.72% 15.97± 0.88%

Static Token Representation: GloVe + CNN
FineTune 13.86± 0.64% 13.96± 0.65% 6.16± 0.35% 6.53± 0.38% 13.70± 0.85% 14.81± 0.93%
ProtoNet 14.05± 0.57% 15.38± 0.49% 8.34± 0.47% 8.93± 0.43% 15.45± 0.74% 16.78± 0.83%
MAML 14.98± 0.63% 17.34± 0.53% 9.22± 0.38% 10.57± 0.34% 16.82± 0.74% 18.34± 0.92%
SNAIL 16.63± 0.59% 19.41± 0.63% 9.89± 0.33% 11.38± 0.56% 20.34± 0.76% 24.54± 0.89%

FewNER (ours) 22.46± 0.61% 27.94± 0.52% 13.09± 0.63% 15.46± 0.62% 28.06± 1.12% 32.87± 1.41%

TABLE 5
Ablation study on intra-domain cross-type adaptation with the NNE

data. ↑ and ↓ indicate absolute F1 changes (improvement and
degradation).

1-shot 5-shot

FEWNER (ours) 23.74± 0.65% 29.50± 0.68%
Conditioning method A −2.34% ↓ −3.43% ↓
Remove character CNN −15.56% ↓ −18.73% ↓
Inner gradient steps: 4 +0.35% ↑ +0.79% ↑
Inner gradient steps: 6 +0.78% ↑ +0.95% ↑
Inner gradient steps: 8 +1.02% ↑ +1.47% ↑
Dimensions of φ: 128 −2.45% ↓ −3.74% ↓
Dimensions of φ: 512 −4.32% ↓ −3.68% ↓

Training “way”: 3 +0.46% ↑ +0.93% ↑
Training “way”: 10 −1.24% ↓ −1.89% ↓
Training “way”: 15 −2.31% ↓ −3.25% ↓

is reasonable because GENIA and BioNLP13CG are both
from the medical domain.

4.5 Further Analysis

4.5.1 Ablation Study
Table 5 reports an ablation analysis on intra-domain cross-
type adaptation with the NNE dataset. FEWNER is our
proposed approach with conditioning method B, 2 inner
gradient steps, 256 dimension of φ and 5 ways. There are
five groups of variants: adopting the conditioning method
A described in Section 3.2.4; removing the character-level
CNN layer; adopting 4, 6 and 8 inner gradient steps during
training; adopting 128 and 512 dimensions of φ; adopting 3,
10 and 15 ways during training.

We can observe that the conditioning method B (i.e.,
FiLM in our implementation) yields a slightly better perfor-
mance than method A (i.e., concatenation). Removing the
character CNN layer results in a huge degradation perfor-
mance (−15.56% and−18.73%). This clearly showcases that
the character-level representations play a very important
role in few-shot NER. This is attributed to the fact that words
in named entities are prone to out-of-training-vocabulary
(OOTV) tokens; however, the character-level representations
can effectively handle OOTV tokens in NER adaptation.
Increasing the inner gradient steps can slightly improve
the performance, at the expense of more computations. The

dimensions of the context parameters φ and the number
of training “ways” are important considerations in order to
achieve good results for few-shot NER.

4.5.2 Time Consuming Analysis
As show in Algorithm 1, FEWNER consists fo two main
phases: a training procedure and an adapting procedure.
Now we empirically investigate the time consumption of
these two phases on one single GPU (Tesla V100) for the
intra-domain cross-type adaptation on NNE. In particular,
the size of inner gradient steps is 2 for training and 8
for testing. The size of a meta batch for outer loops is 8.
During the training phase, our experimental study shows
that each inner loop (i.e., “k” at Line 7 in Algorithm 1)
needs 0.04 second, and the total outer loops (i.e., all “Ti”
at Line 5 in Algorithm 1) need 2.19 seconds for the 5-way 1-
shot configuration. For the 5-way 1-shot configuration, each
inner loop takes 0.04 second and outer loops totally needs
3.44 seconds.

During the adapting phase, the learned meta-knowledge
θMeta is fixed. Our proposed FEWNER only needs to update
the task-specific parameters φ from the current task Tj . For
each test task, each inner loop takes 0.04 second for both
5-way 1-shot and 5-way 5-shot configurations. Evaluating
a task needs 0.36 second and 0.51 second for 5-way 1-shot
and 5-way 5-shot configurations, respectively. Note that the
time consumption is linearly proportional to the data size
for both training and adapting phases. In summary, our
approach FEWNER has very high-computational efficiency
because it updates only a small set of parameters in a low-
dimensional space when adapting new tasks.

4.5.3 Qualitative Analysis
Table 6 shows 3 positive examples and 6 negative examples
produced by FEWNER under the 5-way 1-shot setting. For
the example in NNE→ NNE, FEWNER successfully identi-
fies the three entities which have novel types (i.e., unseen
“ProductFood” and “Country”). For the example in BC
→ UN, FEWNER successfully identifies the new instancesJLarry KingK, Jlast nightK and Jthe BTK killerK, but the
types of “Individual” and “Time” have already appeared in
BC. For the example in GENIA → BioNLP13CG, FEWNER
successfully identifies two entities of “Genes” and one entity
of “Cancer”, while both types do not exist in GENIA.
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TABLE 6
Positive and negative examples under the 5-way 1-shot setting. The results produced by FEWNER are marked with J K. The green and red

highlights indicate a correct and incorrect (missing) result, respectively.

Adaptation 5-way 1-shot NER Results by FEWNER Correct
NNE → NNE Some fruit visionaries say the JFujiKProductFood could someday tumble the JRed DeliciousKProductFood from the

top of JAmericaKCountry ’s apple heap .
3

FG-NER → FG-NER The manager of the “ JOasis Coordinator ProjectKProduct ” is JEnbridgeKGovernment . 7

GENIA → GENIA An overexpression of Jp50KProteinSubunit has been described in follicular dendritic cells (JFDCKCellType) . 7
BC → UN Watching JLarry KingKIndividual Jlast nightKTime about Jthe BTK killer KIndividual 3
BN → CTS JPeterson Trial Scott PetersonKIndividual has been found guilty of murdering JhisKIndividual wife JLaciKIndividual 7

NW → WL JThe Virginia Economic Developers AssociationKGovernment has not taken a stance on the bill , but the organi-
zation ’s leadership is expected to meet JtomorrowKTime to discuss it .

7

GENIA → BioNLP. Expression of JKISS1KGene and JMMP-9 KGene in Jnon-small cell lung cancerKCancer 3
Onto. → BioNLP. the function of Jc-SkiKGene in human diffuse - type gastric carcinoma JOCUM - 2MLN cellsKCell 7
Onto. → FG-NER Historians regard JPortrait Of A Young ManKPicture as the most important painting missing since JWorld War

IIKWar .
7

For the negative example in FG-NER → FG-NER,
FEWNER successfully identifies the mention of JEnbridgeK,
but fails to identity its semantic type “Government”. Typing
is a challenging task because there are 200 types in FG-
NER and the context of the entity is very short. For the
example in GENIA → GENIA, FEWNER misses one entityJfollicular dendritic cellsKCellType. For the example in BN
→ CTS, FEWNER wrongly detects the boundaries of two
entities, “JPetersonKIndividual Trial JScott PetersonKIndividual”.
For the example in NW → WL, FEWNER misses the
coreference, “Jthe organizationKGovernment”. For the negative
example in OntoNotes → BioNLP13CG, FEWNER misses
the entity “Jgastric carcinomaKCancer”. For the negative ex-
ample in OntoNotes→ FG-NER, FEWNER misses the entity
“JHistoriansKPositionVocation”. In summary, we observe that
FEWNER misses some entities and wrongly detects the
boundaries of entities. The different annotation criteria and
writing formats in different domains are the key factors
affecting few-shot transferability. The qualitative analysis
indicates that few-shot learning in NER has important
practical implications, e.g., transferring the 18 types in
OntoNotes to 200 fine-grained types in FG-NER with few
samples. We argue that such coarse-to-fine adaptation can
benefit many downstream intelligence systems, for example,JPortrait Of A Young ManK is labeled as “Picture” rather
than “Other”, and JWorld War IIK is labeled as “War” rather
than “Miscellaneous”.

5 DISCUSSION AND CONCLUSION

Difficulty and Challenge. Few-shot learning has been well
studied in computer vision [21], [25], however, it has not
been explored in sequence labeling. Our study is the first
attempt of adopting few-shot learning in sequence labeling
tasks. We formally define the N -Way K-Shot problem in
NER (see Section 3.1). From our experimental results (see
Sections 4.2.1, 4.3.1, 4.4.1), the performance of few-shot
in NER is not comparable with the performance in text
relation extraction [20] and image classification [51]. Our
study reveals that few-shot learning in sequence labeling is
a difficult NLP task. Existing powerful pre-trained language
models (e.g., BERT and GPT2) cannot solve the problem
well. The main reason lies in that sequence labeling is
different from the conventional classification task, where

each member is independently classified into a category
without taking sequence dependency into account. There-
fore, transferring sequence dependency in few-shot learning
is more difficult to transferring the single token patterns
in classification problem. We argue that few-shot learning
in sequence labeling is far from being solved. We envision
that more studies will be devoted to investigating few-
shot learning in sequence labeling after our first attempt
in this study. In future, we expect that more cut-edging
technologies such as incremental learning and graph neural
networks will be explored to push boundaries of this task.

Implication. We believe that named entity recognition is a
fundamental problem in NLP. Although our experiments
are conducted on NER, our approach can be easily extended
to other sequence labeling tasks, such as part-of-speech tag-
ging and slot filling. Few-shot learning in sequence labeling
will benefit a wide variety of real world NLP applications.
For example, it can save much human-annotation cost for
many low-resource scenarios, such as domain-specific NER
(e.g., medical and social media domains), resource scarce
language tasks (e.g., Portuguese NER and machine trans-
lation). Moreover, few-shot learning can make sequence
labeling systems work as human beings where we have
a remarkable ability to quickly grasp new concepts from
a very small number of examples or a limited amount of
experience, leveraging prior knowledge and context. Our
attempt in this study is the way to the artificial general
intelligence (AGI), which effectively matches human intel-
ligence. Likewise, AGI also needs to be able to transfer
learning from one environment to another, use common
sense, work collaboratively with other machine and human
stakeholders, and attain consciousness.

Conclusion. In this paper, we are the first to investigate
the N -way K-shot setting in few-shot NER. We proposed
FEWNER, a novel meta-learning approach for few-shot
NER, which can effectively adapt to new tasks by updating
a small set of low-dimensional parameters, rather than the
entire network at test time. FEWNER is simpler and more
efficient than recent meta-learning approaches in adapting
to unseen tasks with few gradient steps using little data.
Finally, we conducted three adaptation experiments and the
experimental results demonstrated the effectiveness of our
proposed approach.
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