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Sequence Labeling with Meta-Learning
Jing Li, Peng Han, Xiangnan Ren, Jilin Hu, Lisi Chen and Shuo Shang

Abstract—Recent neural architectures in sequence labeling have yielded state-of-the-art performance on single domain data such as
newswires. However, they still suffer from (i) requiring massive amounts of training data to avoid overfitting; (ii) huge performance
degradation when there is a domain shift in the data distribution between training and testing. To make a sequence labeling system
more broadly useful, it is crucial to reduce its training data requirements and transfer knowledge to other domains. In this paper, we
investigate the problem of domain adaptation for sequence labeling under homogeneous and heterogeneous settings. We propose
METASEQ, a novel meta-learning approach for domain adaptation in sequence labeling. Specifically, METASEQ incorporates
meta-learning and adversarial training strategies to encourage robust, general and transferable representations for sequence labeling.
The key advantage of METASEQ is that it is capable of adapting to new unseen domains with a small amount of annotated data from
those domains. We extensively evaluate METASEQ on named entity recognition, part-of-speech tagging and slot filling under
homogeneous and heterogeneous settings. The experimental results show that METASEQ achieves state-of-the-art performance
against eight baselines. Impressively, METASEQ surpasses the in-domain performance using only 16.17% and 7% of target domain
data on average for homogeneous settings, and 34.76%, 24%, 22.5% of target domain data on average for heterogeneous settings.

Index Terms—Natural Language Processing, Sequence Labeling, Domain Adaptation, Meta-Learning
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1 INTRODUCTION

S EQUENCE Labeling is a fundamental task in natural
language processing (NLP), aiming at assigning a cat-

egorical class or label to each member of a sequence of
observed values [1]–[3]. Some typical sequence labeling
tasks include named entity recognition(NER) [2], part-of-
speech (POS) tagging [4], slot filling [5], etc. Sequence la-
beling not only acts as a standalone tool for information
extraction (IE), but also plays an essential role in a variety of
downstream applications, such as information retrieval [6],
automatic text summarization [7], etc. Recently, a significant
amount of work [8]–[14] has been devoted to developing
end-to-end neural-based sequence labeling models. Despite
their general success, they still suffer from (1) requiring a
large amount of training data to avoid overfitting; (2) huge
performance degradation when these is a domain shift in
the data distribution between training and testing.

Domain adaptation (DA) has been studied as an effective
solution to address the above data insufficiency and domain
shift issues. For homogeneous DA in sequence labeling, the
source and target domains have the same label space. The
model trained on source domains can be directly transferred
to target domains [15]. For heterogeneous DA in sequence
labeling, it is more difficult to directly transfer models from
source domains due to the label set discrepancy among dif-
ferent domains. Several studies have tackled heterogeneous
DA in sequence labeling by learning correlations between
label sets [16], [17] and fine-tuning the source model with
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target domain data [18], [19]. However, most works often
require a large amount of annotated target domain data to
achieve accurate domain adaptation. To make an sequence
labeling system more broadly useful, it is crucial to reduce
its training data requirement. This raises a natural question:
if we have sufficient annotated training data in multiple source
domains, can we distill the knowledge and transfer it to help train
models in a new target domain with few annotations from this
new domain?

Despite the difficulties arising from label discrepancy,
it is possible to transfer knowledge between domains in
NLP because semantic tags (e.g., named entities in NER)
often share lexical and context features (e.g., common vo-
cabularies, similar word semantics and similar sentence
syntaxes) [20]. As humans, we are able to quickly learn
new things from a small number of examples or a limited
amount of experience by leveraging prior knowledge [21].
In short, we learn how to learn much faster and more ef-
ficiently across various tasks. Meta-learning [22], [23] was
proposed to mimic the human ability of acquiring multiple
tasks simultaneously with minimum information. Recently,
meta-learning has received resurgence in the context of few-
shot learning [24]–[26]. Inspired by the essence of meta-
learning [27], [28], our key idea is to leverage the abundant
data available in multiple resource domains to find a robust
and general initialization that could be adapted to new
unknown domains or novel entity categories with a small
amount of new data. Figure 1 illustrates our idea of meta-
learning in sequence labeling.

In this paper, we decompose any sequence labeling
model into “sequence encoder + tag decoder”. In such a
way, different tag decoders are instantiated for heteroge-
neous domain adaptation. However, the sequence encoder
is shared across all domains and is designed to aggregate
the meta-knowledge from multiple source domains so that
it has maximal performance on a new domain with a small
amount of data. Most existing meta-learning approaches



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, 2023 2

Domain 2Domain 1 Domain NN…

Tag 
Decoder 1

Tag 
Decoder 2

Tag 
Decoder NN

New Domains

Sequence 
Encoder

Sequence 
Encoder

Sequence 
Encoder

meta-learning learning/adaptation

∇L1∇L1

∇L3∇L3

θθ

∇L2∇L2

θ
∗

1
θ
∗

1

θ
∗

2
θ
∗

2

θ
∗

3
θ
∗

3

θθSequence Encoder 

Fig. 1. Illustration of the idea of meta-learning in sequence labeling.

are designed for classification under the few-shot setting
(i.e., N -way K-shot [29]). Our research tries to seek a new
meta-learning strategy which would be more suitable for
encouraging robust and general representations in sequence
labeling, rather than for few-shot learning.

More specifically, we propose METASEQ, a novel meta-
learning approach for sequence labeling. First, METASEQ
explicitly simulates the training-to-testing domain shift
by splitting source domains into meta-training and meta-
validation sets. METASEQ is trained in two alternating
phases. In the meta-training phase, METASEQ minimizes
the loss over all meta-training sets, resulting in a tempo-
rary model. In the meta-validation phase, the temporary
model is evaluated on the meta-validation sets to minimize
the domain divergence, enabling meta-knowledge transfer
across different domains. Second, an adversarial network is
used to improve model generalization. All together, these
deliver a robust, general and transferable sequence encoder
for both homogeneous and heterogeneous DA problems. In
summary, the main contributions of this work are five-fold:

• To the best of our knowledge, we are the first to in-
vestigate the problem of transferring meta-knowledge
learned from multiple source domains for sequence
labeling in a meta-learning manner.

• We propose METASEQ, a novel meta-learning approach
for sequence labeling. METASEQ incorporates meta-
learning and adversarial training strategies to encour-
age robust, general and transferable representations
which can be effectively adapted to new domains with
a small amount of training data.

• We extensively evaluate METASEQ on NER, POS
tasks under homogeneous domain adaptation settings.
The results show that METASEQ achieves state-of-the-
art performance against eight baselines. Impressively,
METASEQ surpasses the in-domain performance using
only 16.17% and 7% of target domain data on average,
for NER and POS respectively.

• We extensively evaluate METASEQ on NER, POS
and slot filling tasks under heterogeneous domain
adaptation settings. The results show that METASEQ
achieves state-of-the-art performance against baselines.
METASEQ surpasses the in-domain performance using
only 34.76%, 24%, and 22.5% of target domain data on
average, for NER, POS and slot filling respectively.

• We conduct experiments to further analyze the param-
eter settings and architectural choices. We also present
a study for qualitative analysis.

2 BACKGROUND AND RELATED WORK

2.1 Sequence Labeling
Sequence labeling is different from the conventional classifi-
cation task, where each member is independently classified
into a category without taking sequence dependency into
account. How to model the sequence context and depen-
dency has been a hot spot in the field of sequence labeling.
In the context of NER, the named entities can be obtained
by extracting patterns from the produced output tags. For
example, given the input sequence (i.e., sentence) “Michael
Jordan was born in New York City”, we can get two entities
(i.e., Person: Michael Jordan and Location: New York City)
from the corresponding tag sequence “B-Person, E-Person,
O, O, O, B-Location, I-Location, E-Location”1.

There are three common paradigms for sequence label-
ing [2]: knowledge-based unsupervised systems, feature-based
supervised systems and neural-based systems. Knowledge-based
unsupervised systems rely on lexical knowledge, including
domain-specific gazetteers [30], and Feature-based supervised
systems cast NER as a multi-class classification or sequence
labeling task. Recently, several neural architectures [8], [9],
[11], [11], [31]–[36] have been widely applied in NER be-
cause neural-based systems have the advantage of inferring
latent features and learning sequence labels in an end-to-
end fashion. In addition, transfer learning aims to perform
a machine learning task in a target domain by taking ad-
vantage of knowledge learned from a source domain [37].
Several studies [19], [38]–[51] have already contributed ef-
fort to leveraging deep transfer learning for NER. Most
recent transfer approaches fall into the parameter-sharing
method [42]. Commonly, different neural models [43]–[49]
share certain parts of model parameters between the source
domain and target domain. Yang et al. [50] proposed three
different parameter-sharing models to investigate the trans-
ferability of different layers of representations. In addition,
a fine-tuning strategy is usually used in parameter-sharing
approaches. Some studies first train a model on source
domains and then use the learned parameters to initialize
a model on target domains. For example, Lee et al. [18]
trained a neural model on a large dataset (MIMIC) and then
fine-tuned it on smaller datasets (i2b2 2014). Other examples
along this line can be found in [19], [39].

In this paper, we extend our previous MetaNER [1] ap-
proach for generic sequence labeling. Our approach differs
from these existing solutions in that (1) it aggregates meta-
knowledge from multiple resource domains rather than a
single one to increase the transferability; (2) it learns robust
and general sequence representations for handling both
homogeneous and heterogeneous adaptations.

2.2 Meta-Learning
Meta-learning (a.k.a. learning to learn) [22], [52] aims to
learn a general model that can quickly adapt to a new
task given very few training samples, without needing to
be retrained from scratch. Most recent approaches focus on
few-shot learning and can be broadly categorized as metric-
based methods [29], [53], memory-based methods [54], [55],
and optimization-based methods [23], [25]. Some studies

1. BIOES stands for Begin, Inside, Outside, End, Single.
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[24], [28], [56], [57] have applied meta-learning strategies
for image classification in few-shot learning.

Here, we introduce an optimization-based method,
Model-Agnostic Meta-Learning (MAML) [23], in detail.
Formally, a model is represented by a function fθ with
parameters θ. MAML first forms a set of training tasks
T = {T1, ..., Ti, ...}, where each task consists of a training set
and a validation set. In the N -way K-shot [29] classification,
the training instances are sampled with K labeled examples
from each of N classes, the model changes parameters θ to
θ′i by gradient descent:

θ′i ← θ − α∇Ltr
Ti
(fθ) (1)

where α is a universal learning rate, and LTi
is the task-

related training loss. Model parameters θ are trained to
optimize the performance of fθ′

i
on the unseen validation

examples from Ti across tasks. This leads to the MAML
meta-objective:

min
θ

∑
Ti

Lval
Ti

(fθ′
i
) = Lval

Ti
(fθ−α∇Ltr

Ti
(fθ)) (2)

The goal of MAML is to optimize the model parameters θ to
quickly adapt to new tasks over a few gradient steps, with
few training examples from the unseen tasks. The model
parameter θ is updated by gradient descent:

θ ← β∇θ

∑
Ti

Lval
Ti

(fθ′
i
) (3)

where β is the learning rate of meta optimization.
There have been a few attempts devoted to the appli-

cation of meta-learning in NLP over the last two years. Gu
et al. [58] first explored meta-learning in neural machine
translation. They framed the low-resource translation as
a meta-learning problem which learns to adapt to low-
resource languages based on multilingual high-resource lan-
guage tasks. Huang et al. [59] proposed a method for query
generation based on MAML [23], by reducing a regular
supervised learning problem to the few-shot meta-learning
scenario. Qian and Zhou [27] proposed DAML which is
based on meta-learning, to combine multiple dialog tasks
during training, in order to learn general and transferable
information that is applicable to new domains. Lin et al.
[60] proposed casting personalized dialog learning as a
meta-learning problem, which allows the model to generate
personalized responses by efficiently leveraging only a few
dialog samples instead of human-designed persona descrip-
tions.

Note that the objective of MAML is designed for few-
shot classification under the problem setting of N -way
K-shot. In this paper, we seek a more suitable meta-
learning optimization objective for sequence labeling sce-
narios, which would be more suitable for encouraging ro-
bust representations, rather than for N -way K-shot few-
shot learning. To the best of our knowledge, we are the first
to attempt adopting meta-learning in sequence labeling.

3 METASEQ: SEQUENCE LABELING WITH META-
LEARNING

3.1 Problem Statement
Let Ds = {D1, ...,Dn, ...,DN} be N source domains in
the training phase, where Dn is the n-th source domain

containing annotated data (Xn,Yn). Meanwhile, there are
K target domains Dt = {D1, ...,Dk, ...,DK}, which are
unseen in Ds. Likewise, Dk is the k-th target domain con-
taining annotated data (Xk,Yk). Taking NER as an example,
the input space Xn is raw text (i.e., sentences) and the label
space Yn is the corresponding tag sequence that indicates
the start and end positions of a named entity with the BIOES
schema. For homogeneous sequence labeling, all the source
domains and the target domains share the same label space.
For heterogeneous sequence labeling, the domains can have
different, and even completely, disjoint label spaces.

To make domain adaptation possible, we generally de-
compose any sequence labeling model into two unified
modules: a sequence encoder (learnable parameters θ) and a
tag decoder (learnable parameters ϕ). Our ultimate goal is to
learn a meta-knowledge learner for the sequence encoder by
leveraging sufficient source data Ds. Given a new unseen
domain from Dnew (which can be either homogeneous or
heterogeneous), the new learning task can be solved by
fine-tuning the learned sequence encoder (domain-invariant
parameters) and a new tag decoder (domain-specific param-
eters) with only a small number of training samples. The
meta-knowledge learner of the sequence encoder should
aggregate the knowledge learned from multiple domains
in Ds, resulting in more robust, general and transferable
representations, which can be broadly adapted to achieve
optimum performance in Dnew with as little as possible.

3.2 The METASEQ Approach

3.2.1 Overview of METASEQ

Figure 2 shows an overview of our proposed METASEQ,
which consists of a training phase and an evaluation phase.
In the training phase, we adopt a meta-learning strategy to
distill meta-knowledge from a number of source domains.
During each iteration, we randomly split all source domains
into a meta-training set Dtr and a meta-validation set Dval,
where Ds = Dtr∪Dval andDtr∩Dval = ∅. A meta-training
task Ti is sampled from Dtr and is composed of n instances
from a particular domain. Likewise, a meta-validation task
Tj is sampled from Dval. The validation errors on Dval

should be considered to improve the transferability of the
model. In short, the meta-learning strategy aims to en-
courage the model to learn good parameters that can be
adapted to a new domains with as little data as possible.
We also adopt an adversarial training strategy to improve
model generalization. The adversarial network ensures that
the intermediate representations from the sequence encoder
can mislead the domain discriminator and correctly guide
the tag decoder prediction, while the domain discriminator
tries its best to correctly determine the domain class of each
training instance.

In the final evaluation phase, the meta-knowledge
learned by the sequence encoder can be applied to new
domains. Given a new domain Dnew = {Ttr, Tte}, the
learned sequence encoder and a new tag decoder are fine-
tuned on Ttr and finally tested on Tte. Next, we briefly intro-
duce the sequence labeling model (i.e., “sequence encoder +
tag decoder”). Then, we describe the adversarial training
strategies and meta-learning strategy in detail.
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3.2.2 Sequence Labeling Model

Figure 3 shows the architecture of CNN-BiGRU-CRF, which
uses a Convolutional Neural Network (CNN) to extract
character-level representations, a bidirectional Gated Recur-
rent Unit (BiGRU) to encode sequence context and a Con-
ditional Random Field (CRF) to produce the tag sequence.
Specifically, we decompose the CNN-BiGRU-CRF model
into two modules: a sequence encoder with parameters θ and
a tag decoder with parameters ϕ.

The sequence encoder consists of two layers: the in-
put representation and context encoder. The input rep-
resentation in our study consists of character-level and
word-level representations. Given an input sentence W =
(W1,W2, . . . ,WL) of length L, W ∈ D, let Wl denote

its l-th word. The character-level representation (extracted
by the CNN) and word-level embedding (e.g., pretrained
embedding) for Wl are concatenated as its final represen-
tation, xl ∈ RD , where D represents the dimension of xl.
Note that hand-crafted features can be easily integrated into
this architecture. However, we do not use any hand-crafted
features in this study.

After the input representation layer, the input sequence
can be represented as X = (x1,x2, . . . ,xL). We use a
BiGRU to encode the sequence context. Specifically, GRU
activations at time step l are computed as follows:

zl = σ(Uzxl +Rzhl−1 + bz) (4)
rl = σ(Urxl +Rrhl−1 + br) (5)
nl = tanh(Uhxl +Rh(rl ⊙ hl−1) + bh) (6)
hl = zl ⊙ hl−1 + (1− zl)⊙ nl (7)

where σ(·) is the sigmoid function, tanh(·) is the hyperbolic
tangent function, ⊙ is an element-wise multiplication, zl is
the update gate vector, rl is the reset gate vector, nl is the
new gate vector, and hl is the hidden state at time step l. U ,
R, b are encoder parameters that need to be learned. Each
hidden state of the BiGRU is formalized as: hl =

−→
h l ⊕

←−
h l,

where ⊕ indicates a concatenation operation, and
−→
h l and←−

h l are the hidden states of the forward (left-to-right) and
backward (right-to-left) GRUs, respectively. Assuming the
size of the GRU layer is H , the encoder yields hidden states
in h ∈ RL×2H .

For the tag decoder, we use a CRF that can model
the label sequence jointly instead of decoding each label
independently. Formally, consider h = {h1,h2, ...,hL} as
the input; y = {y1, y2, ..., yL} is the corresponding label
sequence. Y(h) denotes the set of possible label sequences
for h. The probabilistic model for the sequence CRF defines
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a series of probabilities p(y|h;W , b) over all possible label
sequences y given h by:

p(y|h;W , b) =

∏L
i=1 ψi(yi−1, yi,h)∑

y′∈Y(h)

∏L
i=1 ψi(y′i−1, y

′
i,h)

(8)

where ψi(y
′, y,h) = exp(W T

y′,yh) + by′,y ; W T
y′,y and by′,y

are the weights and bias corresponding to label pair (y′, y),
respectively.

3.2.3 Adversarial Training Strategy
Recall that h ∈ R2H is the hidden state of the last step in the
context encoder. We apply a Multi-Layer Perceptron (MLP)
as a domain discriminator to predict domain labels yd:

ω = softmax(tanh(h·P + p)) (9)
c = hω (10)

p(yd|c) = MLP(c) (11)

The tag prediction loss and the domain discriminator
prediction loss are calculated over the meta-training sam-
ples in task Ti from Dtr . These two losses can be written
as

Ltr
Ti
(θ, ϕ) =

∑
Ti

− log p(y|h; θ, ϕ) (12)

Ldis
Ti

(θ, γ) =
∑
Ti

− log p(yd|c; θ, γ) (13)

where θ are the learnable parameters of the sequence en-
coder, ϕ are the parameters of the tag decoder, and γ are the
parameters of the discriminator. At learning time, in order to
encourage domain-invariant features, we seek the parame-
ters θ that maximize the loss of the domain discriminator (by
making the two feature distributions as indistinguishable
as possible), while simultaneously seeking the parameters θ
and γ that minimize the loss of the domain discriminator.
In addition, we seek the parameters ϕ that minimize the
loss of the tag decoder. Thus, the optimization problem
involves a minimization with respect to some parameters
and a maximization with respect to others. Based on this
idea, we define the adversarial objective as:

Ladv
Ti

(θ, ϕ, γ) = Ltr
Ti
(θ, ϕ)− λLdis

Ti
(θ, γ) (14)

The parameter λ controls the trade-off between the two
objectives. Then, we deliver a saddle point of Ladv

Ti
(θ, ϕ, γ)

as

(θ̂, ϕ̂) = argmin
θ,ϕ
Ladv
Ti

(θ, ϕ, γ̂) (15)

γ̂ = argmax
γ
Ladv
Ti

(θ̂, ϕ̂, γ) (16)

Note that the −λ factor in Equation (14) is very impor-
tant because the stochastic gradient descent would directly
minimize the domain prediction loss without such factor,
resulting in discriminative features across domains only.
Following [61], we add a special gradient reversal layer
(GRL) below the shared layer to address the minimax op-
timization problem. During the forward propagation, GRL
acts as an identity transform (i.e., multiplies it by 1). Dur-
ing the backpropagation, the GRL takes the gradient from
the subsequent level and changes its sign, i.e., λLadv

Tj
(θ, φ)

is is effectively replaced with −λLadv
Tj

(θ, φ). Formally, we

define the GRL as a function Rλ(x) by two two equations
describing the forward- and backpropagation behaviours:

Rλ(x) = I (17)
dRλ(x)

dx
= −λI (18)

where I is an identity matrix. This adversarial training
strategy will lead to the emergence of features that are
domain-invariant and discriminative at the same time.

3.2.4 Meta-Learning Strategy
The meta-learning strategy consists of two core phase: a
meta-training phase and a meta-validation phase, as shown
in Figure 2.

Meta-Training (Inner Loop). In the meta-training phase,
our approach tries to learn adaptation parameters from the
meta-training domains Dtr , resulting in a temporary model.
The parameters of the temporary model are adapted by
gradient descent in a similar manner to the feature-critic
networks [28]:

θoldi = θi−1 − α∇θi−1Ltr
Ti
(θi−1, ϕi−1) (19)

θnewi = θoldi − α∇θi−1
λLdis

Ti
(θi−1, γi−1) (20)

where i is the adaptation step in the inner loop, and α is
the learning rate of the inner optimization. At each adap-
tation step, the gradients are calculated with respect to the
parameters from the previous step (i.e., ∇θj−1 ). Note that
Ldis
Ti

is already operated with a gradient reversal layer. The
base model parameters θ0, ϕ0, φ0 should not be changed in
the inner loop (i.e., when updating the temporary model).

Meta-Validation (Outer Loop). After meta-training,
METASEQ has already learned a temporary model
(θoldi , θnewi , ϕ0, γ0) in the meta-training domains Dtr . The
meta-validation phase tries to minimize the distribution
divergence between the source domains Dtr and simu-
lated target domains Dval using the learned temporary
model. It mimics the process of the temporary model being
adapted to unseen domains. More specifically, the outer
meta-validation loss is computed on the task Tj from the
meta-validation domains Dval by

Lval
Tj

(θoldi , θnewi , ϕ0, γ0) = Ltr
Tj
(θoldi , ϕ0) + Ldis

Tj
(θnewi , γ0)

(21)
Equation (21) can make the value range and gradient

more stable [28]. The base model is updated by gradient
descent:

θ0 ← θ0 − β∇θ0

∑
Ti

(Ltr
Ti
(θ, ϕ)− λLdis

Ti
(θ, γ)) (22)

ϕ0 ← ϕ0 − β∇ϕ0

∑
Tj

Lval
Tj

(23)

γ0 ← γ0 − β∇γ0

∑
Tj

Lval
Tj

(24)

where β is the meta-learning rate. Note that Equations
(23) and (24) are computed by differentiating the loss Lval

Ti

with respect to the parameters ϕ0, φ0. Unlike the common
gradient, the update mechanism of Equations (23) and (24)
involves a gradient (w.r.t. the parameters of the base model)
through a gradient (w.r.t. the parameters of the temporary
model). This process requires second order optimization
partial derivatives.
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Algorithm 1: Training and Testing METASEQ

1 Training Procedure()
Input: D = {D1, ...,DN}, and α, β

2 Initialize θ, ϕ, γ;
3 while not converge do
4 Randomly split D = Dtr ∪ Dval and

Dtr ∩ Dval = ∅;
5 Let Φ = {θ0, ϕ0, γ0}
6 for j in meta batch do // Outer loop
7 Sample a task Tj fom Dval;
8 Meta-training:
9 for i in adaptation steps do // Inner loop

10 Sample a task Ti from Dtr ;
11 Compute meta-training loss Ltr

Ti
;

12 Compute domain loss Ldis
Ti

;
13 Compute adapted parameters with

gradient descent for θi−1; // Ti,∇θi−1

14 θoldi = θi−1 − α∇θi−1L
tr
Ti
(θi−1, ϕi−1);

15 θnew
i = θoldi − α∇θi−1λL

dis
Ti

(θi−1, ϕi−1);

16 Meta-validation:
17 Compute meta-validation loss on Tj :
18 Lval

Tj
(θoldi , θnew

i , ϕ0, γ0);

19 Meta-optimization:
20 Perform gradient step w.r.t Φ:
21 θ0 ← θ0 − β∇θ0

∑
Ti
Ladv

Ti
; // Ti,∇θ0

22 ϕ0 ← ϕ0 − β∇ϕ0

∑
Tj
Lval

Tj
; // Tj ,∇ϕ0

23 γ0 ← γ0 − β∇γ0

∑
Tj
Lval

Tj
; // Tj ,∇γ0

24 return θMeta, ϕMeta, γMeta

25 Testing Procedure()
Input: Training set Str and test set Ste of an unseen

domain Dnew

26 Initialize θ from θMeta;
27 Instantiate a new tag decoder ϕ;
28 while available training data do
29 Sample a task Ttr from Str ;
30 Update θ ← θ − β∇θ

∑
Ttr
Ltr

Ttr

31 Update ϕ← ϕ− β∇ϕ

∑
Ttr
Ltr

Ttr

32 return Optimal θ∗ and ϕ∗

33 Precison,Recall, F 1 = fTte(θ
∗, ϕ∗)

34 return Sequence labeling performance on Ste

3.2.5 Algorithm Flow
The pseudocodes for training and testing METASEQ are
given in Algorithm 1. At each iteration during training, we
randomly split D into Dtr and Dval for the inner loop and
outer loop, respectively. In the inner loop, METASEQ takes a
gradient step to get new adaptation parameters, and obtains
the new meta-validation loss. In the outer loop, METASEQ
uses the validation on Dval to differentiate through the
inner loop and update the parameters of the base model:
θ0, ϕ0, φ0. During testing, METASEQ initialize the sequence
encoder with θMeta and instantiate a new tag decoder ϕ.

4 EXPERIMENTS

4.1 Experimental Setups

4.1.1 Baseline Methods
We evaluate METASEQ against the following competitors:

• In-Domain - This is trained on the training set of a
target domain, and tested on the test set of that target

TABLE 1
Statistics of the ACE2005 dataset used in homogeneous NER.

Domains #Types #Sentences #MentionsTrain Dev Test

BC 7 2381 298 298 7291
BN 7 3427 428 429 8606
CTS 7 2731 342 342 8047
NW 7 1858 232 233 7969
UN 7 1790 224 224 5177
WL 7 1730 216 217 5141

domain using the CNN-BiGRU-CRF model. Therefore,
its performance can be regarded as the upper bound
of transferring tasks without using any additional re-
sources.

• D-Shift - This is trained on the combination of training
sets from all source domains. Then, the evaluation is
conducted on the test set of a target domain using the
direct domain shift strategy.

• AGG - This simply aggregates the training sets across
all source and target domains. Note that no domain
adaptation technique is used during training and test-
ing.

• FineTuning - This is first trained on the training sets of
the source domains, and then retrained on the training
set of a target domain [18].

• MultiTask - This models different domains as different
tasks, which are jointly trained on the training sets of
the source and target domains in a multi-task learning
manner [50].

• DANN - This is an unsupervised domain adaptation
approach with adversarial training [61]. This model is
further fine-tuned using the training set of the target
domain.

• WPZ - This is a few-shot learning model that regards
the sequence labeling problem as classification of each
single token [62]. It is first trained on source domains
and then retrained on target domains for token-level
classification.

• METASEQ-Zero - This is trained on source domains
with the Algorithm 1, without fine-tuning.

4.1.2 Implementation Details

For all neural network models, we use GloVe 300-
dimensional pre-trained word embeddings released by
Stanford, which are fine-tuned during training. The dimen-
sion of the character-level representation is 100 and the CNN
filters are [2, 3, 4, 5]. The total number of CNN filters is
100. The bidirectional GRU has a depth of 1 and hidden
size of 128. The inner learning rate α is 0.0001 and meta-
learning rate β is 0.001. We use a dropout of 0.5 after the
convolutional or recurrent layers and a fixed L2 regulariza-
tion of 10−6. The decay rate is 0.09 and the gradient clip
is 5.0. Our proposed METASEQ is implemented with the
PyTorch framework and evaluated on NVIDIA Tesla V100
GPUs. Note that METASEQ requires second order optimiza-
tion partial derivatives. Unfortunately, the double backward
for _cudnn_rnn_backward has not been implemented in
PyTorch so far. Thus, we use the first order derivatives in
meta-learning.
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TABLE 2
Performance (F1 Scores, %) of homogeneous domain adaptation for NER. The best performance is in boldface and the second best is underlined.

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ METASEQ-Zero METASEQ

BC 72.13 64.43 73.22 73.94 74.65 74.92 73.83 67.78 76.04
BN 66.75 62.78 67.11 68.13 69.02 68.35 67.61 64.26 71.42
CTS 81.56 68.43 82.15 82.97 83.04 83.22 82.67 70.79 84.12
NW 74.19 66.93 75.28 76.82 77.21 75.96 76.44 69.58 79.57
UN 65.17 64.18 68.20 69.73 72.73 71.34 70.04 65.13 74.08
WL 65.60 61.32 67.21 68.56 70.32 69.41 68.27 63.59 72.04

Average 70.90 64.67 72.19 73.35 74.49 73.86 73.14 66.85 76.21
Improvement ↑7.49% ↑17.84% ↑5.57% ↑3.90% ↑2.31% ↑3.18% ↑4.20% ↑14.00% -

4.2 Homogeneous Domain Adaptation for NER
4.2.1 Datasets and Setups
In this experiment, we use the Automatic Content Ex-
traction 2005 (ACE2005) dataset2, which consists of six
domains: Broadcast Conversations (BC), Broadcast News
(BN), Conversational Telephone Speech (CTS), Newswire
(NW), Usenet (UN), and Weblog (WL). The six domains
have homogeneous entity types: Person, Organization, Lo-
cation, Geo-Political Entity, Facility, Vehicle and Weapon.
ACE2005 is annotated with nested named entities. For ex-
ample, the sentence “Orders went out today to deploy 17,000
U.S. Army soldiers in the Persian Gulf region” is originally
annotated as [17,000 U.S. Army soldiers]PER, [U.S.]GPE ,
[U.S. Army]ORG, [the Persian Gulf region]LOC , [Persian
Gulf]LOC . We only keep the innermost entities for nested
entities. That is, this example sentence is preprocessed as
[U.S.]GPE and [Persian Gulf]LOC in our experiments. Ta-
ble 1 reports the statistics of the six domains of ACE2005.

Following [28], [63], we adopt the leave-one-out evalua-
tion protocol by picking one domain to hold out as the target
domain Dnew for the final evaluation. For each iteration
in the training phase, four source domains are randomly
chosen as the meta-training domainsDtr , and the remaining
domain as the meta-validation domain Dval. We measure
the performance of all models based on the popular and
widely adopted standard metric used in NER: micro-F1.

4.2.2 Experimental Results
Table 2 reports the results of different methods under the
leave-one-out settings. We make the following observations:

First, METASEQ outperforms all baseline methods in
terms of F1 scores. More specifically, our model outper-
forms In-Domain, D-Shift, AGG, FineTuning, MultiTask,
DANN, WPZ and METASEQ-Zero by relative F1 improve-
ments of 7.49%, 17.84%, 5.57%, 3.90%, 2.31%, 3.18%, 4.20%
and 14.00%, respectively. We attribute this to the fact that
METASEQ explicitly simulates domain shift during training
via meta-learning, which is helpful for adapting to a novel
target domain.

Second, D-Shift and METASEQ-Zero both do not use the
target domain data. Both methods suffer from performance
degradation when adapting to specific domains. However,
the zero-shot version of our approach (METASEQ-Zero) still
outperforms the direct domain shift method (D-Shift).

Third, AGG consistently outperforms In-Domain (which
is the upper bound performance using in-domain train-
ing sets) on all target domains. This is because the six

2. https://catalog.ldc.upenn.edu/LDC2006T06

Fig. 4. F1 score (METASEQ) w.r.t. the percentage of the target do-
main training set for different target domains on homogeneous NER.
METASEQ surpasses the In-Domain performance using only 16.17% of
training data of target domains, on average.

Fig. 5. F1 score w.r.t. the percentage of the target domain training set
for different methods on the CTS target domain (homogeneous NER).

domains have homogeneous entity labels from the same
dataset (ACE2005). Therefore, the differences among these
six domains in terms of statistical distributions are rela-
tively small. As such, aggregating the training sets across
all source and target domains can slightly enhance the
performance of the In-Domain method. Notably, METASEQ
significantly outperforms the In-Domain method by an av-
erage improvement of 7.49%.

Although the above experiments gain significant im-
provements when the full training sets of target domains
are available, we are more interested in the low-resource
scenarios. We employ the same setup as previously and
vary the data ratio of the target training set as 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1. Figure 4 illustrates the F1
scores of METASEQ with respect to the data ratios of the

https://catalog.ldc.upenn.edu/LDC2006T06
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TABLE 3
Statistics of the datasets used in heterogeneous NER.

Datasets #Types #Sentences #MentionsTrain Dev Test

Source Domains
CoNLL03 4 14041 3250 3453 34841

OntoNotes5.0 18 59917 8525 8262 104248
WikiGold 4 143342 1500 1696 300069
WNUT17 6 3394 1009 1287 3850

Target Domains
BioNLP13PC 4 2498 856 1694 15885
MIT Movie 12 8797 978 2443 26634

MIT Restaurant 8 6894 766 1521 18514
Re3d 10 687 77 199 3388
SEC 4 1047 117 303 1479

target domain training data across different target domains.
Impressively, METASEQ surpasses the performance of In-
Domain methods using only 31%, 23%, 19%, 16%, 2% and
6% of the target domain training sets for BC, BN, CTS, NW,
UN, and WL, respectively.

Figure 5 shows the F1 scores with respect to the data
ratios of the target domain training sets for different meth-
ods on the CTS target domain. On average, the baselines
perform on par with the In-Domain model (In-Domain
bound) using 67% of training data on CTS. Compared with
these baselines, METASEQ surpasses the In-Domain bound
using only 19% of the training data. The same observations
hold for the BC, BN, NW, UN and WL domains.

4.3 Heterogeneous Domain Adaptation for NER
4.3.1 Datasets and Setups
For the heterogeneous domain adaptation, we use four
datasets as source domains and five datasets as target
domains. Table 3 summarizes the statistics of these nine
datasets. CoNLL03, OntoNotes5.0, WikiGold and WNUT17
are from the domains of newswires, various, social media
and Wikipedia, respectively. BioNLP13PC, MIT Movie, MIT
Restaurant, Re3d and SEC are from the domains of medical,
movie, restaurant, defense and finance, respectively.

For each iteration in the training phase, three source
domains are randomly chosen as the meta-training domains,
and the remaining one as the meta-validation domain. In the
final evaluation phase, we fine-tune the sequence encoder
learned from source domains and instantiate a new tag
decoder for each target domain. Note that the methods of D-
Shift and METASEQ-Zero cannot be used in heterogeneous
settings because source and target domains have different
label spaces.

4.3.2 Experimental Results
Table 4 reports the results of different methods under het-
erogeneous settings. We make the following observations:

First, METASEQ outperforms all competitors in terms
of F1 scores. More specifically, our model outperforms In-
Domain, AGG, FineTuning, MultiTask, DANN and WPZ by
relative F1 improvements of 6.20%, 21.17%, 5.29%, 3.53%,
2.75% and 5.51%, respectively.

Second, on average across all target domains, the per-
formance of In-Domain is better than AGG, and all other
baselines (i.e., FineTuning, MultiTask, DANN and WPZ) are
better than In-Domain.

Fig. 6. F1 score (METASEQ) w.r.t. the percentage of the target do-
main training set for different target domains (heterogeneous NER).
METASEQ surpasses the In-Domain performance using only 34.76% of
training data of target domains, on average.

Fig. 7. F1 score w.r.t. the percentage of the target domain training set
for different methods on the BioNLP13PC (heterogeneous NER ).

Third, different from homogeneous adaptation, under
heterogeneous settings, simply aggregating source and tar-
get domains can both boost and worsen the performance of
the In-Domain method, which is also observed in [28]. For
example, the performance of AGG is much worse than the
In-Domain method on the Re3d domain, while sightly better
on the MIT Movie domain. Overall, the performance of
AGG is worse than In-Domain in most cases. This is because
the larger difference between source and target domains
makes heterogeneous adaptation more challenging.

We also investigate the performances in low-resource
scenarios. We employ the same setup as previously and
vary the data ratio of the target training sets as 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1. Figure 6 illustrates the F1
scores of METASEQ with respect to the data ratios of the
target domain training sets across different target domains.
Different from the previous homogeneous adaptation cases,
METASEQ needs more training data from target domains
to outperform the In-Domain method. More specifically,
METASEQ surpasses the performance of In-Domain meth-
ods using only 52%, 41%, 45%, 31% and 5% of training
data for BioNLP13PC, MIT Movie, MIT Restaurant, Re3d,
and SEC, respectively. Figure 7 shows the F1 scores with
respect to the data ratios of the target domain training sets
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TABLE 4
Performance of the heterogeneous domain adaptation for NER. The best performance is in boldface and the second best is underlined.

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ METASEQ-Zero METASEQ

BioNLP13PC 82.11 - 79.03 82.05 83.23 83.75 81.54 - 85.11
MIT Movie 82.48 - 83.18 84.27 85.03 83.95 82.79 - 86.41

MIT Restaurant 74.86 - 73.12 75.39 76.21 75.97 74.84 - 78.05
Re3d 62.74 - 26.04 63.21 64.52 65.78 63.89 - 68.52
SEC 75.86 - 70.00 76.38 78.82 81.32 77.53 - 83.44

Average 75.61 - 66.27 76.26 77.56 78.15 76.11 - 80.30
Improvement ↑6.20% - ↑21.17% ↑5.29% ↑3.53% ↑2.75% ↑5.51% - -

TABLE 5
Statistics of datasets used in homogeneous POS.

Domains #Types #Sentences
Train Dev Test

adventure 81 3696 462 463
belles_lettres 81 5705 713 714

learned 81 6140 768 768
lore 81 3866 483 484

fiction 81 3370 421 422
news 81 3656 457 458

romance 81 3535 442 442

for different methods on the BioNLP13PC target domain.
Compared with the baseline methods, METASEQ quickly
achieves the same performance as In-Domain (In-Domain
bound) using less training data. The same observations
hold for the MIT Movie, MIT Restaurant, Re3d, and SEC
domains.

4.4 Homogeneous Domain Adaptation for POS

4.4.1 Datasets and Setups

In this experiment, we use 7 domains of Brown corpus:
adventure, belles_lettres, learned, lore, fiction, news and ro-
mance. Table 5 summarizes the statistics of these 7 datasets.
Note that the corpus originally contains 86 POS tags. In the
homogeneous setting, we use a intersection set of these 7
domains, resulting in a set of 81 tags.

We also adopt the leave-one-out evaluation protocol by
picking one domain to hold out as the target domain for
the final evaluation. For each iteration during training, six
source domains are randomly chosen as the meta-training
domains, and the remaining one as the meta-validation
domain.

4.4.2 Experimental Results

Table 6 reports the results of different methods under the
leave-one-out settings. We make the following observations:

First, METASEQ outperforms all baseline methods in
terms of accuracy. More specifically, our model outperforms
In-Domain, D-Shift, AGG, FineTuning, MultiTask, DANN,
WPZ and METASEQ-Zero by relative accuracy improve-
ments of 4.33%, 6.38%, 3.16%, 2.09%, 1.60%, 1.71%, 3.35%
and 4.70%.

Second, the performance of In-Domain is slightly better
than the one of D-Shift. This is because the domain dif-
ferences among these 7 datasets are small. However, the
zero-shot version of our approach (METASEQ-Zero) still
outperforms the direct domain shift method (D-Shift), and
is comparable with In-Domain.

Fig. 8. Accuracy (METASEQ) w.r.t. the percentage of the target domain
training set for different target domains on homogeneous POS.

Third, AGG and WPZ slightly outperform In-Domain in
terms of the average accuracy scores. Aggregating the train-
ing sets across all source and target domains can slightly
enhance the performance of the In-Domain method. In addi-
tion, FineTuning, MultiTask and DANN achieve comparable
performance.

Furthermore, we are more interested in the low-resource
scenarios. We employ the same setup as previously and
vary the data ratio of the target training set as 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 1. Figure 8 illustrates the accuracy
of METASEQ with respect to the data ratios of the target
domain training data across different target domains. For
belles_lettres and fiction domains, METASEQ-Zero outper-
form In-domain. METASEQ surpasses the performance of
In-Domain methods using only 5%, 5%, 10%, 5%, 10% of
the target domain training sets for adventure, learned, lore,
news, and romance, respectively.

Figure 9 shows the accuracy scores with respect to the
data ratios of the target domain training sets for different
methods on the adventure target domain. Compared with
these baseline methods, METASEQ surpasses the In-Domain
bound using less training data (less than 5%).

4.5 Heterogeneous Domain Adaptation for POS

4.5.1 Datasets and Setups
For the heterogeneous POS, we use three datasets as source
domains and six datasets as target domains. Table 7 sum-
marizes the statistics of these ten datasets. WSJ, SWBD and
ATIS are the Wall Street Journal, Switchboard and Air Travel
Information System transcripts of Treebak3, respectively.
HOB, REL and GOV are from the genres of ‘hobbies’,
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TABLE 6
Performance (Accuracy, %) of homogeneous domain adaptation for POS. The best performance is in boldface and the second best is underlined.

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ METASEQ-Zero METASEQ

adventure 92.19 91.03 94.47 95.21 94.92 95.83 94.52 92.09 96.84
belles_lettres 94.20 93.11 95.31 95.98 96.34 94.87 93.41 95.38 97.97

learned 93.87 90.20 94.25 95.63 96.84 97.43 94.76 92.74 98.17
lore 92.63 91.26 93.55 94.37 95.72 94.28 94.09 91.56 97.21

fiction 93.57 93.38 94.73 95.62 95.02 96.02 94.85 94.05 96.99
news 92.03 90.33 92.98 94.52 96.38 95.34 93.72 91.63 97.26

romance 94.81 91.46 95.44 96.38 95.72 96.42 94.21 93.57 97.21
Average 93.32 91.54 94.39 95.39 95.85 95.74 94.23 93.00 97.38

Improvement ↑4.33% ↑6.38% ↑3.16% ↑2.09% ↑1.60% ↑1.71% ↑3.35% ↑4.70% -

Fig. 9. Accuracy w.r.t. the percentage of the target domain training set
for different methods on the ‘adventure’ domain (homogeneous POS).

TABLE 7
Statistics of the datasets used in heterogeneous POS.

Datasets Domains #Types #Sentences
Train Dev Test

Source Domains
WSJ Newswires 45 41094 6265 7191

SWBD Telephone speech 45 122990 15374 15374
HOB Hobbies 86 3350 419 419

Target Domains
ATIS Air travel 32 452 57 57

Twitter Social media 49 1121 140 141
Genia Medical 47 16435 2054 2055
NPS Online chat 46 8099 1012 1013
REL Religion 85 1372 172 172
GOV Governmet 83 2424 303 304

‘religion’ and ‘government’ of Brown corpus. Twitter is the
dataset from social media. Genia is the primary collection
of biomedical literature compiled and annotated within the
scope of the GENIA project. NPS is gathered from various
online chat services in accordance with their terms of ser-
vice. For each iteration during training, two source domains
are randomly chosen as the meta-training domains, and the
remaining one as the meta-validation domain.

4.5.2 Experimental Results
Table 8 reports the results of different methods under hetero-
geneous POS settings. We make the following observations:

First, METASEQ outperforms all competitors in terms of
accuracy scores. More specifically, our model outperforms
In-Domain, AGG, Fine-Tuning, MultiTask, DANN and WPZ
by relative F1 improvements of 4.79%, 11.56%, 3.73%, 2.22%,
1.64% and 3.09%, respectively.

Fig. 10. Accuracy w.r.t. the percentage of the target domain training set
for different target domains on heterogeneous POS.

Fig. 11. Accuracy w.r.t. the percentage of the target domain training set
for different methods on ATIS (heterogeneous POS).

Second, the performance of AGG is worse than In-
Domain in all target domains. This empirical results show
that naively aggregating source and target domains can
worsen the performance of the In-Domain method for POS.
This is because of the huge difference between source and
target domain text genres, and the label space discrepancy.

We also investigate the performances in low-resource
scenarios. We employ the same setup as previously and vary
the data ratio of the target training sets as 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, and 1. Figure 10 illustrates the accuracy
scores of METASEQ with respect to the data ratios of the
target domain training sets across different target domains.
More specifically, METASEQ surpasses the performance of
In-Domain methods using only 10%, 30%, 20%, 30% and
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TABLE 8
Performance (Accuracy, %) of heterogeneous domain adaptation for POS. The best performance is in boldface and the second best is underlined.

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ METASEQ-Zero METASEQ

ATIS 94.02 - 92.04 94.98 95.95 96.45 95.08 - 98.27
Twitter 88.08 - 84.82 89.45 91.34 90.45 89.32 - 92.52
Genia 95.34 - 93.73 96.33 97.44 98.03 96.98 - 99.02
NPS 89.55 - 85.73 90.77 92.45 93.42 91.34 - 95.48
REL 93.56 - 82.55 94.13 95.45 96.78 94.98 - 98.00
GOV 94.76 - 82.74 95.33 96.64 97.42 96.74 - 98.63

Average 92.55 - 86.94 93.49 94.88 95.43 94.07 - 96.99
Improvement ↑4.79% - ↑11.56% ↑3.73% ↑2.22% ↑1.64% ↑3.09% - -

TABLE 9
Statistics of the datasets used in heterogeneous slot filling.

Domains #Types #Sentences
Train Dev Test

Source Domains
AddToPlaylist 5 1747 195 100

GetWeather 9 1800 200 100
SearchScreeningEvent 7 1763 196 100

Target Domains
BookRestaurant 14 1775 198 100

PlayMusic 9 1800 200 100
RateBook 7 1760 196 100

SearchCreativeWork 2 1758 196 100

30% of training data for ATIS, Twitter, Genia, NPS, REL and
GOV. Figure 11 shows the accuracy scores with respect to
the data ratios of the target domain training sets for different
methods on the ATIS domain. Compared with the baseline
methods, METASEQ quickly achieves the same performance
as In-Domain (In-Domain bound) using less training data
(around 10%).

4.6 Heterogeneous Domain Adaptation for Slot Filling
4.6.1 Datasets and Setups
For the heterogeneous domain adaptation for slot filling, we
use the SNIPS corpus which consists of 7 domains. Table 9
summarizes the statistics of these 7 domains. In particular,
AddToPlaylist, GetWeather and SearchScreeningEvent are
considered as source domains. BookRestaurant, PlayMusic,
RateBook and SearchCreativeWork are chosen as target
domains. For each iteration during training, two source
domains are randomly chosen as the meta-training domains,
and the remaining one as the meta-validation domain.

4.6.2 Experimental Results
Table 10 reports the results of different methods under
heterogeneous slot filling settings. We make the following
observations:

First, METASEQ outperforms all competitors in terms
of F1 scores. More specifically, our model outperforms In-
Domain, AGG, Fine-Tuning, MultiTask, DANN and WPZ
by relative F1 improvements of 5.26%, 6.93%, 4.31%, 2.54%,
2.69% and 4.01%, respectively.

Second, on average across all target domains, the per-
formance of In-Domain is slightly better than AGG, and all
other baselines (i.e., Fine- Tuning, MultiTask, DANN and
WPZ) are better than In-Domain. Simply aggregating source
and target domains hurts the performance of the In-Domain
method,

Fig. 12. F1 score w.r.t. the percentage of the target domain training set
for different domains on heterogeneous slot filling.

Fig. 13. F1 score w.r.t. the percentage of the target domain training set
for different methods on BookRestaurant (heterogeneous slot filling).

We employ the same setup as previously and vary the
data ratio of the target training sets as 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, and 1. Figure 12 illustrates the F1 scores
of METASEQ with respect to the data ratios of the target
domain training sets across different target domains. More
specifically, METASEQ surpasses the performance of In-
Domain methods using only 20%, 30%, 20%, and 20% of
training data for BookRestaurant, PlayMusic, RateBook and
SearchCreativeWork, respectively. Figure 7 shows the F1
scores with respect to the data ratios of the target domain
training sets for different methods on the BookRestaurant
domain. Compared with the baseline methods, METASEQ
quickly achieves the same performance as In-Domain (In-
Domain bound) using less training data (around 15%).
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TABLE 10
Performance (F1 Scores, %) of heterogeneous slot filling. The best performance is in boldface and the second best is underlined.

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ METASEQ-Zero METASEQ

BookRestaurant 93.51 - 92.7 93.89 95.46 96.74 94.56 - 97.76
PlayMusic 86.55 - 83.22 87.88 89.35 88.25 87.47 - 91.93
RateBook 95.18 - 94.42 95.67 97.64 96.41 96.23 - 99.72

SearchCreativeWork 94.26 - 93.41 95.43 96.83 97.37 95.64 - 99.53
Average 92.38 - 90.94 93.21 94.82 94.69 93.48 - 97.26

Improvement ↑5.26% - ↑6.93% ↑4.31% ↑2.54% ↑2.69% ↑4.02% - -

(a) Study for architectural choices (b) Parameter study for λ
Fig. 14. Impact of architectural choices and parameter λ.

4.7 Further Analysis

4.7.1 Ablation Study

Table 14(a) reports an ablation analysis on the test set of
BioNLP13PC. The full model is our proposed METASEQ.
There are five variations: we remove the adversarial strat-
egy, remove the meta-learning strategy, update the model
using θ(new) only, update the model using MAML [23],
and remove CNNs. We observe that our update mechanism
outperforms the MAML method. Meanwhile, the character-
level representations play an important role in domain
adaptation for NER. This ablation study clearly showcases
the importance of each component of METASEQ.

Table 14(b) reports a study on parameter sensitivity for
λ. Parameter λ is the trade-off between the tag decoder loss
and domain discriminator loss during adversarial training.
We observe that λ = 0.8 yields the best empirical perfor-
mance. This empirical result demonstrates that we need to
balance the two learning objectives for better transferability.

4.7.2 Qualitative Analysis

Because we are more interested in low-resource scenarios,
we train METASEQ using only 10% of the training data
for all target domains. Table 11 shows some positive and
negative examples for homogeneous and heterogeneous
domain adaptations.

For the homogeneous NER, we only keep the inner-
most entities for all nested entities when preprocessing the
ACE2005 dataset. This may lead to many short entities being
present in the ground truth. For the negative example in
BC, the ground truth entity is JU.S. KGpe, while our result isJU.S. ArmyKOrg. For the negative example in BN, the ground
truth entity is Jmajor league baseballKOrg, while METASEQ
fails to detect the correct boundaries of this entity. For the
example in CTS, METASEQ misses an entity Jy’allKOrg. From
the negative examples in the heterogeneous NER, we also
observe that METASEQ misses some entities and wrongly
detects the boundaries of others. For POS, the ground truth

tags are ‘dried/VBD’, ‘Northumberland/NP’, ‘Guilford-
Martin/NP’, ‘connecting/VBG’, ‘iguess/VBP’, ‘control/JJ’
and ‘depressed/JJ’. For slot filling, the ground truth tags areJtatarKcuisine, JReady To DieKalbum. In summary, the different
annotation criteria in different domains are the key factors
affecting transferability. Although METASEQ is designed for
domain adaptation, we do not claim that it can handle
all cases in the real world where the natural language is
complicated and noisy.

5 CONCLUSION

In this paper, we proposed METASEQ, a novel meta-learning
approach for both homogeneous and heterogeneous domain
adaptations in sequence labeling. In particular, METASEQ
can effectively learn a robust and general sequence en-
coder from multiple source domains. The key advantage
of METASEQ is that it can accurately adapt to unseen do-
mains with a small amount of data. We conducted extensive
experiments on NER, POS and slot filling tasks under ho-
mogeneous and heterogeneous domain adaptation settings.
The experimental results demonstrate the effectiveness of
our proposed approach. We also conducted experiments to
analyze the parameter settings and architectural choices.
Finally, a case study was presented for qualitative analysis.
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