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Few-Shot Relation Extraction with Dual Graph
Neural Network Interaction

Jing Li, Shanshan Feng and Billy Chiu

Abstract—Recent advances in relation extraction with deep
neural architectures have achieved excellent performance. How-
ever, current models still suffer from two main drawbacks (i)
they require enormous volumes of training data to avoid model
overfitting and (ii) there is a sharp decrease in performance
when the data distribution during training and testing shift from
one domain to the other. It is thus vital to reduce the data
requirement in training and explicitly model the distribution
difference when transferring knowledge from one domain to
another. In this work, we concentrate on few-shot relation
extraction under domain adaptation settings. Specifically, we
propose DUALGRAPH, a novel graph neural network based
approach for few-shot relation extraction. DUALGRAPH leverages
an edge-labeling dual graph (i.e., an instance graph and a
distribution graph) to explicitly model the intra-class similarity
and inter-class dissimilarity in each individual graph, as well as
the instance-level and distribution-level relations across graphs.
A dual graph interaction mechanism is proposed to adequately
fuse the information between the two graphs in a cyclic flow
manner. We extensively evaluate DUALGRAPH on FewRel1.0 and
FewRel2.0 benchmarks under four few-shot configurations. The
experimental results demonstrate that DUALGRAPH can match
or outperform previously published approaches. We also perform
experiments to further investigate the parameter settings and
architectural choices, and we offer a qualitative analysis.

Index Terms—Few-Shot Learning, Relation Extraction, Graph
Neural Network

I. INTRODUCTION

RELATION Extraction is an important task in natural
language processing (NLP), with the objective of deter-

mining the semantic relationship between a head entity and a
tail entity in text [1]–[5]. Relation extraction is critical in a
variety of NLP applications, such as question answering [6],
[7] and knowledge base construction [8], [9].

A substantial amount of effort has gone into developing
supervised models for relation extraction, including feature
engineering based methods [10], [11], kernel based meth-
ods [12], [13] and deep neural network based methods [14]–
[16]. Despite their general success, these models are never-
theless limited by the need of massive quantities of annotated
corpora to avoid overfitting. To reduce the requirement of
annotated training data, distantly supervised methods [17] are
proposed to exploit large knowledge bases (e.g., Freebase [18]
and DBPedia [19]) to automatically label named entities and
their relations, and then utilize the annotated text to produce
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features and train a model [20]–[22]. However, the automat-
ically labeled training data often includes noise and suffers
from the long-tail problem [23], where most relations have
few training instances (i.e., samples). This makes it difficult
for conventional relation extraction approaches to extract the
long-tail relations. Another effective approach to reducing data
requirement is domain adaptation [24] (also known as transfer
learning), which is a technique that uses a large amount of rich
data from a source domain to enhance performance in a low-
resource target domain. This has also created an overwhelming
demand for novel approaches that can extract relations in the
low-resource target domain with very few training instances.

Although rule-base methods [25], [26] can alleviate the
problem of data scarcity to some extent, they will only
capture the occurrences they explicitly cover. An effective
method to relieve the aforementioned data shortage is few-shot
learning [27], which seeks to categorize fresh test samples after
only seeing a few training examples containing supervised
information. Few-shot learning has been extensively studied in
computer vision, typically including metric-learning based ap-
proaches [28], [29] and meta-learning based approaches [30],
[31]. Few-shot learning is less prevalent in natural language
processing than it is in computer vision. In the last two years,
a few attempts have been made to apply few-shot learning
to NLP, including query generation [32] and named entity
recognition [33]. In particular, Han et al. [1], [2] introduced the
Few-Shot relation extraction Dataset (FewRel1.0), consisting
of 100 relations obtained from Wikipedia articles and labeled
by crowdworkers. FewRel2.0 [2] was built on the FewRel1.0
dataset by including a new development and test set from a
quite different domain. In this study, we focus on the more
challenging FewRel2.0 for domain adaptation. Table I shows
a data example of the N -way K-shot configuration (that is,
K labeled instances/samples for each of N classes).

Several studies have contributed to pushing the boundaries
of FewRel2.0. For example, Han et al. [1], [2] investigated pro-
totypical networks [29] in relation extraction through learning
a metric space where relation extraction can be accomplished
by computing distances between prototype representations of
each class. Recently, there has also been a surge in interest
in graph neural networks (GNNs) to model rational structures
on data [34], [35]. Few-shot GNNs [36] were proposed to
propagate label information solely based on node-labeling
features. Han et al. [2] also explored few-shot GNNs in
relation extraction with a convolutional neural network. How-
ever, existing models suffer from a significant degradation in
performance when the data distribution during training and
testing shift from one domain to the other. Therefore, we
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TABLE I
AN EXAMPLE OF 3-WAY 1-SHOT RELATION EXTRACTION IN FEWREL2.0.
A TASK IS MADE UP OF TWO PARTS: A SUPPORT SET AND A QUERY SET.

NOTE THAT THE SAMPLES USED IN TRAINING AND TESTING PHASES
COME FROM DIFFERENT DOMAINS.

Training Phase (Wikipedia)

support

nominated_for. #1: [Francis Aston]e1 was awarded the
1922 [Nobel Prize in Chemistry]e2 for this achievement.
country_of_origin. #1: [Swedish]e2 author John Aj-
vide Lindqvist released his debut horror novel “[Let the
Right One In]e1” in 2004.
country_of_citizenship. #1: [Willy Hofmeister]e1
was a [German]e2 rugby union player who competed in the
1900 Summer Olympics.

query country_of_origin. #1: Sjofn is an album by
[Gjallarhorn]e1, a band from [Finland]e2.

Testing Phase (Biomedicine)

support

gene_Ilays_role_in_Irocess. #1: the genes mthfr,
[mtr]e1, mtrr, and tcn2 play key roles in [folate
metabolism]e2.
gene_found_in_organism. #1: light-at-night expo-
sure can disrupt the [human]e1 circadian rhythm via [clock
gene]e2 expressions.
inheritance_type_of. #1: the [ivic syndrome]e1 is
an [autosomal dominant]e2 condition affecting mainly the
upper limbs.

query gene_Ilays_role_in_Irocess. #1: [integrins]e1
mediate [cell adhesion]e2 to the extracellular matrix.

envision that an approach can explicitly model distribution
relations among samples to alleviate the domain shift.

Inspired by the success of the edge-labeling GNN [34], [35]
in computer vision, we propose DUALGRAPH, a GNN-based
approach for few-shot relation extraction in NLP. An instance
graph (where each node stands for an instance) is constructed
to model the instance-level relation of one instance to another
instance. A distribution graph (where each node is generated
by pairwise comparison) is built to represent the distribution-
level relations between one instance and all other instances.
Figure 1 illustrates the instance and distribution graphs. In
addition to node features, edge features are utilized to ex-
plicitly model both the inter-class dissimilarity and intra-class
similarity in each graph. A dual graph interaction mechanism
is proposed to iteratively update node and edge features in
a cyclic flow manner. More specifically, the node features
flow into the edge features in each individual graph. At the
same time, the edge features in one graph flow into the node
features in another graph. The cyclic flow update leads to
adequate fusion not only between node and edge features, but
also between instance-level and distribution-level relations. In
summary, this study makes four major contributions:

• We propose DUALGRAPH, a novel GNN based approach
for few-shot relation extraction. Notably, DUALGRAPH
leverages an edge-labeling dual graph to explicitly model
the inter-class dissimilarity and intra-class similarity in
each individual graph, as well as the instance-level and
distribution-level similarities across graphs, simultane-
ously. A cyclic flow update strategy is proposed to
adequately fuse the information between two graphs.

• We extensively evaluate DUALGRAPH on FewRel1.0 and
FewRel2.0 benchmarks under four few-shot configura-
tions. The results show that DUALGRAPH can match or

Instance 

Graph

Distribution 

Graph

Pairwise Comparison

Fig. 1. Illustration of instance and distribution graphs (best viewed in color).
The distribution graph is constructed from the instance graph by a pairwise
comparison manner.

outperform previously published approaches. In particu-
lar, DUALGRAPH achieves at least comparable results to
the current state-of-the-art on FewRel1.0 and delivers the
state-of-the-art performance on FewRel2.0 at the time of
writing.

• We also did experiments to empirically investigate the
rational of architectural choices and parameter settings,
and we offer a qualitative analysis.

The rest of this study is structured as follows: Section II ex-
amines research on relation extraction, few-shot learning, and
graph neural networks. Section III presents the methodology
of DUALGRAPH. In Section IV, we evaluate DUALGRAPH on
a benchmark and conduct a further analysis study. Section V
concludes this work.

II. RELATED WORK

In this section, we discuss related work along three lines:
relation extraction, few-shot learning, and graph neural net-
works.

A. Relation Extraction

The task of extracting semantic relation from text, which
generally exist between two or more named entities, is known
as relation extraction [37] . Relation extraction can be framed
as extracting the triple (e1, r, e2), which means that the head
entity e1 has relation r with another tail entity e2. If the
mentions of entities are known or given, relation extraction be-
comes relation classification where the relation r is classified
into one of several predefined classes. In this paper, we fellow
this kind of relation extraction. If the mentions and relation
classes are both unknown, the paradigm is generally referred
to open information extraction [38], [39], where r is often
expressed with a free phrase. We concentrate on summarizing
relation extraction works in this section. In summary, there are
three common paradigms for relation extraction: rule-based
approaches, supervised approaches and distantly supervised
approaches.

Rule-based approaches usually rely on handcrafted rules,
which are designed based on syntactic-lexical patterns. Reiss et
al. [25] developed an algebraic method for rule-based IE that
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uses query optimization to overcome scalability issues. Bolle-
gala et al. [26] presented a sequential co-clustering method
that clusters distinct lexical-syntactic patterns that define a
certain semantic relation, as well as diverse entity pairings
that share that semantic relation. Rule-based approaches tend
to have high precision and can be tailored to specific domains.
However, these approaches often suffer from low-recall and a
great deal of manual labor is needed to develop all conceiv-
able rules. For supervised approaches, feature-based, kernel-
based, and neural-based methods are the three mainstream
branches. Manually engineered features play an important
role in feature-based methods. Kambhatla et al. [10] used
maximum entropy approach to integrate various semantic, syn-
tactic, lexical and characteristics gathered from text. Zhou et
al. [11] studied the use of SVM to include different semantic,
syntactic, and lexical features in relation extraction. Kernel
method is a kind of nonparametric density estimation approach
to calculating a kernel function (i.e., a similarity measure)
between data instances. Some examples include the sequence
kernel [12], dependency tree kernel [40], dependency graph
path kernel [41] and composite kernel [13]. The key advantage
of neural-based methods [14]–[16] is their strong capability
for semantic composition and feature learning, which are
enabled by both neural processing and distributed vector
embedding, without the need of human feature engineering.
Finally, the concept behind distantly supervised approaches
is to leverage huge knowledge bases (e.g., DBPedia and
Freebase) to automatically identify named entities in text and
then utilize the labeled data to produce latent embeddings and
learn a model [20]–[22], [42]. However, automatically labeled
training data often includes noise. Some studies have already
contributed efforts to noise reduction [43], [44].

B. Few-Shot Learning

The goal of few-shot learning is to categorize fresh test
(unseen) samples based on only a few annotated instances
with supervised information which have been viewed [27],
[45]. Few-shot learning has received a great deal of interest in
the field of computer vision. One mainstream branch of few-
shot learning lies in using metric learning to learn the distance
distributions across classes. Koch et al. [28] provided a method
for accomplishing one-shot learning that involves first learning
deep convolutional siamese neural networks for verification
using the weighted L1 distance. Vinyals et al. [46] introduced
matching networks, taking use of recent techniques in memory
and attention to allow for fast learning. In an embedding space,
matching networks may be thought of as a weighted nearest-
neighbor classifier. Snell et al. [29] introduced prototypical
networks which make image classification by calculating rep-
resentation distances between class prototypes in the learned
metric space. Sung et al. [47] proposed the idea of relation
networks, which compares training instances within episodes
(i.e., few-shot environment) in a learned distance metric space.

Another flourishing branch of few-shot learning approaches
focuses on optimizing model parameters to encourage transfer-
able knowledge between tasks through meta-learning. Simply,
meta-learning [48], [49] seeks to build a generic model that

is able to fast adopt to unseen tasks given very few annotated
instances, without having to be relearned from the ground up.
MAML [30], introduced by Finn, tackles the few-shot learning
problem by meta-learning a generic parameter initialization.
Such an initialization can be fine-tuned at test time with a
few gradient updates utilizing a limited number of annotated
samples from target domains. Mishra et al. [31] introduced
the simple neural attentive learner (SNAIL), which makes
use of an innovative mix of causal attention and temporal
convolutions.

C. Few-Shot Relation Extraction

Few-shot learning is less prevalent in natural language
processing than in computer vision. In particular, few-shot
relation extraction aims to extract relations between entities
in textual data using a minimal number of annotated relation
examples (e.g., 1 or 5) [50], [51]. Few studies were committed
to the use of few-shot learning in relation extraction in
recent years. Han et al. [1], [2] presented the first few-shot
relation extraction dataset (FewRel1.0), which is made up of
100 semantic relations (totally including 70, 000 instances)
obtained from Wikipedia articles. REGRAB [52] is a Bayesian
meta-learning approach to learn the posterior distribution of
the prototype vectors of relations. HCRP [53] is a relation-
prototype contrastive learning approach which generates in-
formative prototypes to model small inter-relation variations.
Similarly, CP [54] is an entity-masked contrastive pre-training
framework for better understanding textual context and entity
types. CTEG [55] is proposed to use the entity-guided atten-
tion, confusion-aware training based on Transformer encoders.
MapRE [56] leverages the label-agnostic and label-aware
knowledge in pretraining to improve the model performance
in low-resource relation extraction tasks. Some other represen-
tative approaches include hybrid attention-based prototypical
networks [57], distributional similarity training [58] and the
multi-level aggregation and matching networks [3]. Recently,
ConceptFERE [59] is proposed to provide clues for relation
prediction and boost the relation classification performance
by leveraging the external knowledge base, i.e., Concept
Graph. KEFDA [60] incorporates general and domain-specific
knowledge graphs (i.e., WikiData and UMLS) into the model
to improve its domain adaptability. Our approach differs from
previous methods in that (1) our approach is a novel graph-
based method specifically designed for domain adaptation,
rather than a meta-learning based fast algorithm. (2) our
approach does not require the computationally expensive pre-
training on large-scale corpora. (3) our approach does not rely
heavily on external knowledge bases such as Concept Graph
and WikiData.

D. Graph Neural Networks

Graph neural networks (GNNs) utilizes the message passing
mechanism to capture the graph dependency [61]–[63]. GNNs
were first proposed to process the data represented in graph
domains with neural networks [61], [64], [65].

Recently, graph autoencoders (GAEs) [66], [67], recurrent
graph neural networks (RecGNNs) [68], [69], convolutional
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Fig. 2. An overview of our proposed DUALGRAPH. A 2-way 2-shot few-shot learning problem is used as an example in this illustration. “A” and “B” indicate
two different relations. “A1” and “A2” represent two different instances of the relation of “A”. The proposed approach is composed of four components:
relation representation extraction, edge-labeling graph initialization, dual graph interaction and loss generation.

graph neural networks (ConvGNNs) [70], [71] and spatial-
temporal graph neural networks (STGNNs) [72], [73] have
demonstrated ground-breaking performance in many domains.
A few approaches [36], [74] have studied the application
of GNNs in few-shot leaning based on the node-labeling
approach, in which each node is embedded by vector features.
Qu et al. [52] proposed a Bayesian approach with meta-
learning for learning the posterior distribution of relations,
where the prototype embeddings are parameterized with GNNs
on a global graph. Jatin et al. [75] proposed a method for
assigning a probability measure to each graph relying on its
normalized Laplacian. In addition, Kim et al. [34] introduced
the edge-labeling GNN under few-shot settings. In their ap-
proach, the node and edge representations are alternatively
updated so that both the inter-cluster dissimilarity and intra-
cluster similarity can be directly modeled by edge-labeling
graph. Yang et al. [35] proposed the distribution propagation
graph network (DPGN) for image classification, where the
distribution- and instance- level information are explicitly
modeled in a dual graph. However, most of existing studies
are designed for few-shot image classification and there is
no work addressing few-shot relation extraction with edge-
labeling GNNs.

III. METHODOLOGY

In this section, we will first formally define the task of few-
shot relation extraction. Following that, we will give a step-
by-step description of our DUALGRAPH approach.

A. Problem Definition: Few-Shot Relation Extraction

An annotated dataset consisting of three partitions (i.e.,
a training part Dtrain, a development part Ddev and a test
part Dtest) is available in few-shot relation extraction, . The

instance in each partition can be indicated by (s, p, y), where
s represents a sentence, p indicates the positions of the head
and tail named entities in the sentence, and y indicates the
relation between the head and tail named entities. The relation
class spaces among these three partitions are often disjoint.
In this work, we investigate a more difficult case, i.e., the
relation class spaces between the test set and the training set
are not only mutually exclusive, but also come from different
domains. In few-shot relation extraction, we seek to create a
model f : s 7→ ŷ that is able to map a sentence (s, p) with
a true label y ∈ Y to the prediction ŷ ∈ Y using very few
annotated samples. A task Ti is a collection of instances, which
is composed of a support set Dspt

Ti
and a query set Dqry

Ti
(note

that Dspt∩Dqry = ∅). During the training phase, the real (i.e.,
true) labels of Dspt

Ti
and Dqry

Ti
are both available for the source

task Ti ∈ Dtrain. During the testing phase, a new (i.e., unseen
during training) target task Tj ∈ Dtest only comprises a few
annotated samples Dspt

Tj
. The ultimate objective is to predict

the labels for Dqry
Tj

, given a few samples in Dspt
Tj

.
The N -way K-shot configuration has been extensively

adopted in recent studies on few-shot learning, where Dspt
Ti

and Dspt
Tj

typically both comprise K instances (i.e., K-shot)
for each of N randomly selected relations (i.e., N -way) for
support sets. Dqry

Ti
and Dqry

Tj
usually both include one sample

for each of the N classes. In summary, we expect that a model
trained on the tasks Ti ∈ Dtrain will work well on the tasks
Tj ∈ Dtest.

B. The DUALGRAPH Approach

1) Overview of DUALGRAPH: As shown in Figure 2,
DUALGRAPH is made up of four components: relation rep-
resentation extraction, edge-labeling graph initialization, dual
graph interaction and loss generation. Given a sentence with
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Fig. 3. Architecture of extracting relation representations from entity-aware
Transformers. Four entity markers, [Ent1], [\Ent1], [Ent2], [\Ent2],
are inserted into the original sentence. The final representation is formulated
by concatenating the hidden states of [CLS], [Ent1] and [Ent2].

the positions of head and tail entities, the relation repre-
sentation extraction module aims to produce contextualized
relation representations from the text. The edge-labeling graph
initialization module aims to construct two graphs (i.e., an
instance graph and a distribution graph) and performs the
node and edge representation initialization. A node of instance
graph stands for an instance. A node of distribution graph
is generated by a pairwise comparison (one instance to all
other instances) manner (see Figure 1). Notably, the edge-
labeling graph is able to explicitly model both the inter-class
dissimilarity and intra-class similarity in each individual graph.
Next, the dual graph interaction module then aims to propagate
label information from annotated samples to unannotated
samples, by considering the information at both an instance
and distribution level. Specifically, the instance graph and the
distribution graph are iteratively updated with each other in a
cyclic flow manner (see Algorithm 1), which leads to adequate
fusion between instance-level and distribution-level relations
across the two graphs. Finally, the loss generation module aims
to compute the classification loss based on the node and edge
predictions.

2) Relation Representation Extraction: As shown in Fig-
ure 3, a relation representation is composed of three parts:
a token (T), segment (E) and position (P) embedding. First,
a special placeholder token ([CLS]) is added as the first
token of every sequence and an [SEP] is appended as
the last token. In addition, the entity markers [Ent1] and
[\Ent1] are inserted into the original sentence and used to
indicate the head entity. Similarly, the entity markers [Ent2]
and [\Ent2] are used to indicate the tail entity. These
entity markers provide rich entity information when learning
language representation models [76]. Token embeddings are
based on WordPiece embeddings with a 30,000 token vocab-
ulary. Segment embeddings are learned to identify whether
a token comes from sentence A or sentence B. For relation
extraction in this study, the input sequence is always a single

sentence. Therefore, all tokens in input sequence are from
sentence A (i.e., EA in Figure 3). Position embeddings are
learned to capture the location information for each token.
The input representation of a token is constructed by summing
these three types of embeddings. Then, the input representation
is passed into Transformer layers to produce contextualized
relation representations.

Formally, given a modified sequence W =
(W1,W2, . . . ,WN ) of length N (i.e., special tokens
and entity markers have already been added into W ), let
Wn represent its n-th token. The input can be denoted as
X = (x1,x2, . . . ,xN ) after the input embedding layer. Let H
be the hidden dimension of Transformers. Then, Transformer
layers are used to encode the sequence context, yielding
hidden states h = {h1,h2, ...,hN} ∈ RN×H . Next, the final
relation representation hr ∈ R3×H for W is formulated by
concatenating the hidden states of [CLS], [Ent1] and
[Ent2]:

hr = h[CLS] ⊕ h[Ent1] ⊕ h[Ent2] (1)

where ⊕ stands for a concatenation operation.
3) Edge-Labeling Graph Initialization: For a given N -

way K-shot task T , we construct two graphs based on all
samples in the support and query sets: an instance graph
GI = (VI , EI) where VI and EI denote nodes and edges in
GI , and a distribution graph GD = (VD, ED) where VD and
ED denote nodes and edges in GD.

Let viI be the node representation of Vi
I and eijI be the edge

representation of E ijI . Our approach involves L generation
layers to propagate the dual graph. For the first generation
l = 0, the node representation viI ∈ R3×H is initialized by the
output of entity-aware Transformers,

v0,iI = hi
r (2)

The edge eijI ∈ R indicates the instance similarity between
the node Vi

I and the node Vj
I . It is initialized by

e0,ijI = fMLP1(sim < v0,iI , v0,jI >) (3)

where sim < ·, · > is a similarity function (i.e., we use the
Euclidean distance in our implementation) and fMLP1 is the
feature transformation network that projects the similarity to a
scale [35]. The distribution graph GD is constructed based on
the instance similarities E ijI in GI . The node representation
viD aims to aggregate all instance similarities between the
sample i and other support samples in the task T . That is,
viD works in a pairwise comparison manner (see Figure 1).
For the N -way K-shot setting, viD ∈ RNK is an N × K
dimensional features, where the j-th element indicates the
distribution relation between instances i and j. The node viD
is initialized by

v0,iD = ⊕|NK
j=0δ(yi, yj) (4)

where ⊕ stands for a concatenation operation, and δ(.) is the
Kronecker function whose value is equal to 1 when the labels
of two nodes are the same, i.e., yi = yj and 0 otherwise.
The edge representation eijD ∈ R indicates the distribution
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similarity between the node Vi
D and the node Vj

D. It is
initialized by

e0,ijD = fMLP2(sim < v0,iD , v0,jD >) (5)

4) Dual Graph Interaction: Similar to the existing
distribution-based method [35], the instance graph GI and
the distribution graph GD are iteratively updated with each
other in a cyclic flow manner. In each respective graph, the
node representation flows into the edge representation. At the
same time, the edge representation in one graph flows into
the node representation in another graph. More specifically,
the edge and node representations are updated by the flow
vl−1
I → elI → vlD → elD → vlI . Note that the update order is

fixed because of the way of initialization in Equation 2 and
the way of graph construction. This update mechanism leads to
adequate fusion between instance-level and distribution-level
relations across the two graphs.

In detail, for the l-th generation layer, the edge and node
representations in the dual graph are updated by

el,ijI = fMLP3(sim < vl−1,i
I , vl−1,j

I > ·el−1,ij
I ) (6)

vl,iD = fMLP4(⊕|NK
j=0e

l,ij
I , vl−1,i

D ) (7)

el,ijD = fMLP5(sim < vl,iD , vl,jD > ·el−1,ij
D ) (8)

vl,iI = fMLP6(
∑
j

(el,ijD · vl−1,j
I ), vl−1,i

I ) (9)

where fMLP∗ are different feature transformation networks,
and l-1 denotes the (l-1)-th generation layer. In summary, the
dual graph interaction enables our approach to not only fuse
the node and edge representations in each individual graph, but
also inject the distribution-level information into the instance-
level representation across graphs.

5) Loss Generation: First, for a given query sample, we can
obtain the relation class prediction based on the edge represen-
tation in the instance graph. Second, we can also predict query
edge labels in the instance graph to explicitly model both the
inter-class dissimilarity and intra-class similarity. Finally, we
can obtain the relation class prediction for query sets based
on the edge representation in the distribution graph. Therefore,
the overall loss consists of the following three parts.

Instance Query Node Loss. The prediction probability of
node V l,i

I can be expressed as follows:

P (ŷi|vl,iI ) = softmax(
NK∑
j

el,ijI · yj) (10)

Thus, the instance query node loss can be formulated as:

Ll
pv = −

∑
i

logP (ŷi|vl,iI ) (11)

Instance Query Edge Loss. The query edge loss in the
instance graph can be formulated as

Ll
pe = BCELoss(el,ijI , yij) (12)

where BCELoss is the binary cross entropy function, and
yij is the ground-truth edge label between the sample i and
the sample j. Note that yij is equal to 1 for yi = yj and 0
otherwise.

Algorithm 1: The inference process of DUALGRAPH

Input: A test N -way K-shot task T , consisting of a
support set Dspt

T and a query set (Q samples)
Dqry

T
Output: Relation class predictions for the query set

Dqry
T

1 Relation representation extraction by entity-aware
Transformers;

2 Dual graph construction and initialization, GI and GD;
/* Update node and edge features via

dual graph interaction */
3 for l = 1, ..., L do // generation layers
4 elI ← InstanceEdgeUpdate(el−1

I , vl−1
I );

5 vlD ← DistributionNodeUpdate(elI , v
l−1
D );

6 elD ← DistributionEdgeUpdate(el−1
D , vlD);

7 vlI ← InstanceNodeUpdate(elD, vl−1
I );

/* Query sample prediction */

8 {ŷi}Qi ← softmax(
∑NK

j eL,ij
I · yj)

Distribution Query Node Loss. Likewise, the prediction
probability of node V l,i

D can be formulated as follows:

P (ŷi|vl,iD ) = softmax(
NK∑
j

el,ijD · yj) (13)

Thus, the distribution query node loss can be formulated as:

Ll
dv = −

∑
i

logP (ŷi|vl,iD ) (14)

Finally, the overall objective is a weighted sum of these
three parts:

L =

L∑
l

(αLl
pv + βLl

pe + γLl
dv) (15)

where the symbol L represents the total number of generation
layers; α, β and γ are weights for controlling the trade-off
among the three losses.

6) Algorithm Flow: The inference procedure of DUAL-
GRAPH is detailed in Algorithm 1. Given a few-shot learning
task T , DUALGRAPH predicts the Q samples in the query set
through the dual graph interaction. Lines 4-7 clearly show
the cyclic flow with different font colors. First, the node
representations in the instance graph flow into edge represen-
tations in this instance graph. Then the edge representations
in the instance graph flow into the distribution graph. Next,
the node representations in the distribution graph flow into
edge representations in this distribution graph. Finally, the
edge representations in the distribution graph flow into the
instance graph to refine node representations in instance graph.
Line 8 shows that predictions are made by the updated dual
graph. The query sample prediction (i.e., relation extraction
result) can simply be obtained from the edge labels (the last
generation layer L) in the instance graph.
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TABLE II
STATISTICS OF DATASETS.

FewFel1.0 FewFel2.0
# Relations # Instances # Relations # Instances

Train 64 44,800 64 44,800
Dev 16 11,200 10 1,000
Test 20 14,000 15 1,000

IV. EXPERIMENTS

The experimental setups are presented first in this section.
Then, we present our experiments and findings on FewRel2.0.
Finally, we present an ablation study, parameters analysis and
qualitative analysis.

A. Setups

1) Dataset and Metrics: To the best of our knowledge,
FewRel1.0 [1] is only one benchmark for few-shot relation
extraction. It comprises 100 semantic relations (totally in-
cluding 70,000 instances) obtained from Wikipedia articles
and manually labeled by crowdworkers. These 100 relations
are from the same domain and each relation includes 700
instances. Moreover, they are divided into 20, 16 and 64
relations for test, development and training, respectively.
FewRel2.0 [2] was built on the FewRel1.0 dataset by including
a new development and test set from a quite different domain.
The training set of FewRel2.0 is the same as the original
FewRel training set. However, the test set of FewRel2.0 is from
the PubMed corpus1 (biomedical), and consists of 15 newly
annotated relations, each of which includes 100 instances.
Note that the test of FewRel2.0 is hidden for fair comparison.
The development set of FewRel2.0 is constructed based on
the SemEval-2010 task 8 dataset [77]. The development set
includes 10 relations which are composed of 1000 instances.
In this study, we mainly focus on FewRel2.0 because we
investigate a more challenging scenario, i.e., the training and
test sets are from different domains. Table II summarizes the
statistics of datasets.

We conduct experiments on four few-shot configurations: 5-
way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot.
To preserve the integrity of the test results, the test set of
FewRel2.0 is not released to the public. For the test accuracy,
we submit our models to the official Leaderboard2 to obtain the
official experimental results on the hidden test set. However,
the development set is available for the public. Therefore, we
conduct experiments on 1000 randomly selected tasks from the
development set for the ablation study and parameters analysis.

2) Baseline Methods: DUALGRAPH is compared to the
following competitors:

• GNN - GNN [36] considers all query and support in-
stances as nodes to formulate a GNN where relational
structures can be leveraged with a task-driven message
passing algorithm. As a result, a query instance receives
information from its support set in the graph to conduct

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://thunlp.github.io/2/fewrel2_da.html

classification. The instances are represented by convolu-
tional neural networks (CNNs) [15].

• Prototypical Networks - Prototypical Networks [29] are
founded on the concept that each class has a prototype
representation in a latent embedding space. More specif-
ically, prototypical Networks perform relation extrac-
tion by calculating the distances between two prototype
representations in a learned metric space. We use two
encoders for relation representation extraction: CNN and
BERT [78]. In addition, we use an adversarial training
strategy to learn domain-invariant representations in the
prototypical networks. The adversarial methods are de-
noted as Proto-ADV (CNN) and Proto-ADV (BERT).

• BERT-PAIR - BERT-PAIR [2] is a pair-wise method
based on BERT. It pairs each query sample with all the
support samples in turn, and then concatenates each pair
as one sequence which is fed into BERT.

• HCRP - HCRP [53] is a hybrid contrastive relation-
prototype approach which pulls instances of the same
relation class closer in the representation space while
pushing dis-similar ones apart.

• FAEA - FAEA [79] is a function words adaptively
enhanced attention framework for few-shot inverse rela-
tion classification, in which a hybrid attention model is
designed to attend class related function words based on
meta-learning.

• Anonymous Models on Leaderboard - We also compare
our proposed model with recent anonymous models listed
on the official FewRel2.0 Leaderboard.

3) Implementation Details: Our proposed DUALGRAPH is
trained with the AdamW optimizer. The weight decay is set
to 1e − 6 and the initial learning rate is set to 1e − 5.
Note that we do not adopt any learning rate decay strategy.
The epsilon for the AdamW optimizer is set to 1e − 8. The
number of generation layers (i.e., L in our model) is 6.
The max gradient normalization is 1.0. We adopts a fixed
L2 regularization of 1e − 6. The dropout is set to 0.1 after
all recurrent, convolutional and Transformers layers. We use
bert-base-uncased to initialize our Transformer layers.
For the weights of α, β and γ, a grid search strategy is adopted
to determine the optimal values. Our proposed model is written
in PyTorch and evaluated on NVIDIA Tesla V100 GPUs.

B. Experimental Results

1) Performance on FewRel2.0 Domain Adaption: Table III
shows the accuracies of different models on the test set of
FewRel2.0 under four configurations. The upper half of the
table is composed of the baselines implemented in the previous
work [2]. The bottom half consists of recent anonymous
models listed on the official Leaderboard (on the date we
submitted our model and wrote up this paper).3 The following
observations are made:

First, DUALGRAPH delivers the state-of-the-art perfor-
mance, outperforming the six baseline models and four anony-

3Note that we do not involve the KEFDA approach [60] in Table III because
it leverages huge external resources (i.e., WikiData and UMLS), while our
approach operates without the need for any external resource.

https://www.ncbi.nlm.nih.gov/pubmed/
https://thunlp.github.io/2/fewrel2_da.html
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TABLE III
ACCURACIES (%) OF DIFFERENT MODELS ON THE FEWREL2.0 TEST SET UNDER FOUR FEW-SHOT CONFIGURATIONS.

Models 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

GNN (CNN) [36] 27.94 29.33 16.44 18.26
Proto (CNN) [29] 35.09 49.37 22.98 35.22
Proto (BERT) [29] 40.12 51.50 26.45 36.93

Proto-ADV (BERT) [29] 41.90 54.74 27.36 37.40
Proto-ADV (CNN) [29] 42.21 58.71 28.91 44.35

BERT-PAIR [2] 67.41 78.57 54.89 66.85
HCRP (BERT) [53] 76.34 83.03 63.77 72.94
FAEA (BERT) [79] 73.58 90.10 62.98 80.51

Anonymous Groundhog 67.23 82.09 54.32 71.01
Anonymous Python 66.41 83.52 51.85 73.60
Anonymous Pony 76.71 86.69 66.72 78.46

Anonymous PAMN 77.54 90.40 65.98 82.03
DUALGRAPH (ours) 80.11 91.01 73.89 82.34

TABLE IV
ACCURACIES (%) OF DIFFERENT MODELS ON THE FEWREL1.0 VALIDATION SET UNDER FOUR FEW-SHOT CONFIGURATIONS. ♣ INDICATES THAT

RESULTS ARE FROM [52]. RESULTS WITH ♢ ARE REPORTED IN FEWREL OFFICIAL LEADERBOARD. RESULTS WITH △ ARE REPORTED IN [53].

Models 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

MAML [30] ♣ 82.93 86.21 73.20 76.06
MTB [58] ♣ 84.61 88.76 75.22 80.15

BMAML [80] ♣ 85.80 89.71 76.66 81.34
BERT-PAIR [1] ♢ 85.66 89.48 76.84 81.76

Proto-BERT [29] ♣ 82.92 91.32 73.24 83.68
CTEG-BERT [55] △ 84.72 92.52 76.01 84.89

REGRAB [52] ♣ 87.95 92.54 80.26 86.72
HCRP [53] △ 90.90 93.22 84.11 87.79

DUALGRAPH (ours) 88.71 93.92 81.79 88.05

mous models by significant margins. More specifically, DU-
ALGRAPH outperforms GNN (CNN) by absolute improve-
ments of 52.17%, 61.68%, 57.45% and 64.08% for the four
few-shot configurations. Moreover, DUALGRAPH outperforms
BERT-PAIR by absolute improvements of 12.7%, 12.44%,
19.01% and 15.49% for the four few-shot configurations. It
is worth mentioning that DUALGRAPH outperforms recent
FAEA model by 6.53, 0.91, 10.91, and 1.83 points for the
four few-shot configurations. Notably, DUALGRAPH beats the
strongest model (Anonymous PAMN) which was recently sub-
mitted to the official Leaderborad by absolute improvements
of 2.57%, 0.61%, 7.91% and 0.31% for the four few-shot
configurations, respectively. This is due to the fact that DU-
ALGRAPH is effective in propagating label information from
labeled instances to unlabeled instances with a novel edge-
labeling dual graph, where the cyclic flow update mechanism
leads to adequate fusion not only between node and edge
features in each individual graph, but also between instance-
level and distribution-level information across graphs.

Second, the accuracies in the 5-shot settings are significantly
better than in the 1-shot settings, i.e., 91.01% vs. 80.11%
for the 5-way setting and 82.34% vs. 73.89% for the 10-
way setting. This is understandable because the 5-shot setting
provides more training instances than the 1-shot setting.

Third, the naive GNN method with CNN encoders (i.e.,
GNN (CNN)) is not effective for few-shot relation extraction.

In contrast, our GNN-based method is more effective because
it benefits from not only entity-aware Transformers, but also
the dual graph interaction. From the performance of baselines,
we can observe that dynamic Transformer embeddings are
more effective than static CNN-based embeddings. This is
because dynamic embeddings are commonly contextualized
and are more informative and helpful for relation extraction.

2) Performance on FewRel1.0: Although our approach
specifically focuses on few-shot relation extraction under
domain adaption settings, we also investigate the capability of
our approach on the normal setting (i.e., no domain adaption).
Following previous studies [52], [53], [55], we conduct exper-
iments on the validation set of FewRel1.0. Table IV reports
of accuracy scores of different models on the FewRel1.0
validation set. We make the following observations: (1) DU-
ALGRAPH achieves comparable performance compared to the
second best baseline, HCRP, on FewRel1.0. DUALGRAPH
outperforms HCRP on 5-shot settings and HCRP outperforms
DUALGRAPH on 1-shot settings. However, our approach sig-
nificant outperforms HCRP on all domain adaptation settings
as shown in Table III. (2) DUALGRAPH significantly outper-
forms other baselines (except HCRP) by large margins on
all few-shot settings. More specifically, DUALGRAPH achieve
relative improvements from 0.9% to 7.0% on 5-way 1-shot,
relative improvements from 1.5% to 8.9% on 5-way 5-shot,
relative improvements from 1.9% to 11.7% on 10-way 1-shot,
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TABLE V
ABLATION STUDY ON THE DEVELOPMENT SET OF FEWREL2.0. THE SYMBOL “-” INDICATES THE ACCURACY DEGRADATION.

Models 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

Ours 80.54 89.68 73.75 83.16
hr = h[CLS] without entity markers -7.56 -9.34 -8.27 -10.78
hr = h[CLS] with entity markers -3.43 -4.26 -4.23 -5.73

hr = h[Ent1] ⊕ h[Ent2] -1.31 -2.92 -1.98 -3.44
Remove edge-labeling (i.e., node-only) -4.36 -6.34 -5.89 -7.83

Remove GD (i.e., instance-only) -5.74 -6.87 -6.83 -8.56

and relative improvements from 1.6% to 15.8% on 10-way
5-shot. We attribute this to the fact of the effectiveness of our
edge-labeling and dual graph interaction strategies in graph
learning. (3) On the 1-shot settings, our approach exhibits
inferior performance compared to HCRP. The possible reason
is that HCRP leverages external knowledge such as relation
textual descriptions to enhance its overall performance on the
extremely low-resource settings (i.e., 1-shot). In contrast, our
approach relies solely on provided training data. Incorporating
external knowledge into our approach is the future work.

C. Further Analysis
First, we provide an ablation research to validate several

architectural choices in this section. Then we investigate
how the total number of generation layers affects the model
performance. Finally, we also present a qualitative analysis to
showcase positive and negative cases.

1) Ablation Study: An ablation analysis on the development
set of FewRel2.0 is presented in Table V. Our full architecture
adopts the relation representation of hr = h[CLS] ⊕ h[Ent1] ⊕
h[Ent2]. In addition, it adopts the edge-labeling strategy for
both the instance graph and distribution graph. There are
five ablated variations. “hr = h[CLS] without entity markers”
indicates that this model does not utilize entity markers for
the original sequence. “hr = h[CLS] with entity markers”
indicates that the relation representation is extracted from the
hidden state of [CLS] after inserting entity markers. “hr =
h[Ent1] ⊕ h[Ent2]” indicates that the relation representation is
extracted from the concatenation between the hidden states
of [Ent1] and [Ent2]. “Remove edge-labeling (i.e., node-
only)” means that the edge-labeling is removed and only node
features are kept. “Remove GD (i.e., instance-only)” stands for
removing the distribution graph.

Table V shows that the first variation delivers the worst
accuracy for the four few-shot configurations (i.e.,-7.56, -
9.34, -8.27 and -10.78, respectively). The performance when
concatenating h[Ent1] and h[Ent2] is much better than when only
using h[CLS]. These results clearly indicate that entity markers
provide rich and useful information for relation extraction.
Therefore, we adopt hr = h[CLS]⊕h[Ent1]⊕h[Ent2] in our model
based on the consideration that h[CLS] provides context rep-
resentations, while h[Ent1] and h[Ent2] provide entity-oriented
representations. Removing the edge-labeling strategy results
in a significant performance degradation. This is because the
edge-labeling strategy in our approach is able to explicitly
model both the inter-class dissimilarity and intra-class similar-
ity with edge features. Removing the distribution graphs also

Fig. 4. Impact of different numbers of generation layers.

results in a significant performance degradation. This indicates
that the dual graph interaction in a cyclic flow manner plays
an important role in few-shot relation extraction. In summary,
this ablation analysis clearly demonstrates the significance of
all components in our proposed DUALGRAPH approach.

2) Impact of Number of Generation Layers: Our approach
updates the edge and node representations with the dual graph
interaction in a cyclic flow manner. As shown in Algorithm 1,
we use multiple generation layers to iteratively process the
dual graph. The number of generation layers is an important
parameter for achieving good relation extraction performance.
Thus, we experimentally investigate the impact of using
different numbers of generation layers. Figure 4 shows the
accuracy scores on the development set of FewRel2.0. We
can observe that the performance tends to increase with an
increasing number of generation layers, for all four few-shot
configurations. In particular, there is a significant improvement
from one layer to four layers. However, the performance
tends to become stable when the number of steps reaches
six. Therefore, our approach adopts six generation layers. This
is based on the consideration that more layers require more
computations and choosing six layers provides a good balance
between computation and accuracy.

Figure 5 shows a visualization of edge feature propagation
(upper figures) and query instance prediction (bottom figures)
in the testing phase in the 5-way 5-shot configuration. The
upper heatmaps show instance edge features, where each value
indicates the instance-level similarity between two nodes in the
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5-way 5-shot edge features in instance graph
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(a) The 1st generation layer

5-way 5-shot edge features in instance graph
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(b) The 3rd generation layer

5-way 5-shot edge features in instance graph
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(c) The 6th generation layer

Fig. 5. Visualization of edge feature propagation (upper figures) and query instance prediction (bottom figures). This illustration shows a 5-way 5-shot setting
with 26 instances (i.e., 25 instances in the support set and 1 instance in the query set). Note that the first 25 instances are from the support set, and latter 1
(i.e., 26th) is from the query set.

TABLE VI
CASE STUDY UNDER THE 5-WAY 5-SHOT SETTING. OUR DUALGRAPH IS TRAINED ON WIKIPEDIA AND DIRECTLY EVALUATED ON THE BIOMEDICINE

DOMAIN. CIRCLED NUMBERS INDICATES RELATION TYPES. RED COLOR X INDICATES WRONG PREDICTIONS. “NODE-ONLY” STANDS FOR THE MODEL
REMOVING THE EDGE-LABELING STRATEGY. “INSTANCE-ONLY” STANDS FOR THE MODEL REMOVING THE DISTRIBUTION GRAPH.

Support Classes Query Instance Prediction

1 inheritance_type_of

2 ingredient_of
3 is_normal_tissue_origin_of_disease
4 is_primary_anatomic_site_of_disease
5 causative_agent_of

it is clear that the diversity of phenotypes displayed by [breast
cancer]e1 cells reflects the array of cell types present in the
disease-free breast [epithelium]e2, including luminal, basal
and stem cells.
Ground Truth: 3

DUALGRAPH: 3
Node-only: 5
Instance-only: 4

[adrenocortical carcinoma]e1 ( acc ) is a rare and aggressive
tumor arising from the [adrenal cortex]e2 with an incidence
of one to two cases per million within the general us
population .
Ground Truth: 3

DUALGRAPH: 3
Node-only: 1
Instance-only: 4

[intravenous leiomyomatosis]e1 is considered to be a rare
neoplastic disease usually arising from [uterine]e2 fibromy-
omata , but its true incidence may be under-recognized.
Ground Truth: 4

DUALGRAPH: 4
Node-only: 2
Instance-only: 3

[leukocyte adhesion deficiency type 1]e1 (lad-1) is an [auto-
somal recessive]e2 primary immunodeficiency , hallmarked
by defective polymorphonuclear transmigration.
Ground Truth: 1

DUALGRAPH: 1
Node-only: 1
Instance-only: 2

spinocerebellar ataxia type 35 ([sca35]e1) is an [autosomal
dominant]e2 neurodegenerative disorder .
Ground Truth: 1

DUALGRAPH: 1
Node-only: 4
Instance-only: 2

a patient taking [oral risperidone]e1 while using cocaine and
alcohol presented with priapism shortly after long-acting,
injectable [risperidone]e2 was prescribed.
Ground Truth: 2

DUALGRAPH: 2
Node-only: 5
Instance-only: 1

first, third, and sixth generation layers, respectively. There are
a total of 26 instances (i.e., 25 instances from the support
set and 1 instance from the query set). Note that the first
25 instances are from the support set, and latter one (i.e.,
26th) is from the query set in both the y-axis and x-axis.
We can observe that the edge features are gradually refined
in the six generation layers. Compared to the first generation
layer, the instance-level similarity distances between the same
instances are enlarged in the sixth generation layer. In addition,
the different instances (from either the same class or different
classes) are more discriminative in the sixth generation layer.

The bottom heatmaps of Figure 5 show query instance
predictions using the equation in Line 8 of Algorithm 1.
From this figure, we can observe that the query instances can
be correctly predicted in all generation layers (i.e., ground
truth class: class 2). In our implementation, we leverage the
edge features from the last generation layer to predict query
instances. In short, this visualization intuitively shows the
effectiveness of using multiple generation layers in the dual
graph interaction.

3) Qualitative Analysis: In this subsection, we aim to
investigate models’ capability of handling the difficult cases
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(i.e., specifically those involving closely related concepts).
The primary assumption is that the more semantically similar
the relations are, the more difficult it becomes to accurately
identify them. Consequently, we select qualitative cases based
on the extent of word overlap in relation names to assess the
models’ performance in handling such intricacies.

In the development set of FewRel2.0, the range of
overlapping words in relation names varies from 0 to 3.
Table VI shows a case study under the 5-way 5-shot setting
on FewRel2.0, within the context of maximum number of
overlapping words of relation names (i.e., 3). Table VI shows
a case study (i.e., the maximum number of overlapping
words of relation names is 3) under the 5-way 5-shot setting
on FewRel2.0. DUALGRAPH is trained on a Wikipedia
corpus and directly adapted to the biomedicine domain.
Note that Dqry

Ti
and Dqry

Tj
both include 5 samples for each

of the 5 classes in this experiment. The first column shows
the relation classes in the support set, including 5 classes:
1 inheritance_type_of 2 ingredient_of,
3 is_normal_tissue_origin_of_disease, 4
is_primary_anatomic_site_of_disease, and
5 causative_agent_of. The second column shows
some instances in the query set. The third column shows
predictions by different models (Node-only and instance-only
models are same with the definitions in the Ablation Study
Section IV-C1).

We make the following observations: (1) Compared to
node-only and instance-only models, DUALGRAPH is more
effective in modeling the inter-class dissimilarity. Specifically,
the relations of 3 and 4 are very close because both of
them are about the description of disease. We observe that
DUALGRAPH can correctly distinguish these two relations,
while the instance-only model wrongly predicts 3 as 4 , and
4 as 3 (see the 1st - 3rd instances). An additional example is
the case of relations of 1 and 2 (see the 4th - 6th instances).
The instance-only model wrongly predicts 1 as 2 , and 2 as
1 . This qualitative study clearly showcases that the model
cannot handle these difficult cases (very similar relations)
when removing the distribution graph, demonstrating the im-
portance of edge-labeling distribution graph in modeling inter-
class dissimilarity. (2) Compared to node-only and instance-
only models, DUALGRAPH is more effective in modeling
the intra-class similarity. The 1st and 2nd instances both are
belonged to the relation 3 . The node-only model wrongly
detects them as 5 and 1 , while the instance-only model
wrongly detects them as 4 . By contrast, DUALGRAPH can
successfully detect these two instances as 3 , benefiting from
the capability of modeling inter-class dissimilarity. Similar
observations hold on the instances of the relation of 1 (i.e.,
the 4th and 5th instances). In short, compared to node-only
and instance-only models with a singular fusion mechanism,
our distribution graph is constructed from the instance graph
by aggregating the information from it, and both of them
are the edge-labeling graph. The qualitative study shows the
effectiveness of DUALGRAPH in handling difficult cases by
benefiting from explicitly modeling inter-class dissimilarity
and inter-class dissimilarity.

We further take statistics on the tasks where the number

of overlapping words in relation names ranges from 2 to 3.
The results show that the accuracy under the 5-way 5-shot
setting for these tasks is 85.67%, which is much lower than
the overall accuracy of 91.01% (all tasks) in Table III. This
significant performance gap clearly reveals that distinguishing
two semantically similar relations remains a challenging task
for few-shot learning. We anticipate that future research will
focus on addressing more challenging cases, such as those
involving highly semantically similar relations.

V. CONCLUSION

In this study, we investigated few-shot relation extraction
under domain adaptation scenarios. We proposed DUAL-
GRAPH, a novel GNN based approach for few-shot relation
extraction. In particular, DUALGRAPH leverages edge-labeling
strategies to explicitly model the inter-class dissimilarity and
intra-class similarity in each individual graph, and leverages
dual graph (i.e., an instance graph and a distribution graph) to
explicitly model instance-level and distribution-level relations
across graphs. A dual graph interaction mechanism was pro-
posed to adequately fuse the information between two graphs
in a cyclic flow manner. We performed extensive experiments
on FewRel1.0 and FewRel2.0 benchmarks. The experiment
results indicated the effectiveness of DUALGRAPH. We also
conducted empirical experiments to further investigate the
architectural choices and parameter settings. Finally, we offer
a case study for qualitative analysis.

We believe that few-shot relation extraction is a fundamental
problem in NLP. Essentially, our few-shot learning approach
can be applied in other few-shot tasks and will be beneficial
in a wide range of low-resource scenarios. We would want
to investigate the applications of our approach in few-shot
named entity recognition, entity linking and knowledge graph
completion in the future.
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